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a b s t r a c t

In this paper, we study the finite sample behavior of an over-identifying restriction test,
the J test, in generalized method of moments(GMM). We consider two variants of the J
test, one with centered weighting matrix and the other with uncentered weightingmatrix.
Wedemonstrate that the finite sample distribution of J testwith centeredweightingmatrix
is close to F distribution whereas that with uncentered weighting matrix is close to beta
distribution and that both are far different from chi-square distribution. Using this, we
demonstrate why competing simulation results relating to the size property is reported
in the context of dynamic panel data and covariance structure models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Hansen (1982), the generalized method of moments (GMM) estimator has been widely used
in applied econometric analysis. When using GMM, we need to first check the validity of the moment conditions via the
over-identified restriction test, often called the J test, since the GMM estimator becomes inconsistent when the moment
conditions are invalid. Unfortunately, the finite sample behavior of the J test is found to be poor: the J test reveals large size
distortions in finite samples, especially when the number of moment conditions is large. In the context of GMM estimation
of dynamic panel data models, Bowsher (2002) provided Monte Carlo evidence that the J test tends to become under-sized
as the number ofmoment conditions gets larger. However, Hayakawa (2015) has recently provided exactly opposite results:
the J test tends to be over-sized as the number of moment conditions becomes larger. Similar results are reported in the
literature of covariance structure analysis.1 For instance, Hu et al. (1992) conduct an extensive simulation study and show
that GMM-based tests tend to become over-sized when the sample size is small.2 Several approaches have been proposed
to address this problem. Yuan and Bentler (1997) proposed an alternative form of weighting matrix, and Yuan and Bentler
(1999) proposed an F test rather than the conventional chi-square test. However, with regard to the former test, Yuan and
Bentler (1997) noted that the alternative approach tends to over-correct and results in an under-sized test when the sample
size is small.

Thus, the literature reports contrasting results with regard to the size property of tests. However, the reason for this
difference has not been well discussed in the literature. This paper tries to find the reason by investigating the finite sample
distribution of tests with centered and uncentered weighting matrices. We show that finite sample distribution of a test
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with centered weightingmatrix can be approximated by F distribution whereas that with uncentered weighting matrix can
be approximated by beta distribution. From these findings, we try to explain why a test with centered weighting matrix
tends to become over-sized whereas that with uncentered weighting matrix tends to become under-sized. We also provide
a detailed analysis in the context of dynamic panel data and covariance structure models.

In Section 2, we briefly review the GMM specification test. Section 3 explores distributions that approximate the finite
sample distribution of GMM specification tests. Section 4 provides a detailed analysis of dynamic panel data and covariance
structure models. Finally, we conclude the study in Section 5.

2. GMM specification test

First, let us consider the moment conditions E[g(xi, θ0)] = E[gi(θ0)] = 0, where g(·, ·) is an m × 1 known function,
{xi}Ni=1 are independent observations, and θ0 is the true value of a p × 1 vector of unknown parameters.

We consider two variants of two-step GMM estimators,θ = argmin
θ

ḡN(θ)′�(θ̌)−1ḡN(θ),

θ = argmin
θ

ḡN(θ)′�(θ̌)−1ḡN(θ),

where θ̌ is a preliminary consistent estimator of θ, ḡN(θ) = N−1N
i=1 gi(θ), and

�(θ) =
1

N − 1

N
i=1

[gi(θ) − ḡN(θ)][gi(θ) − ḡN(θ)]′, �(θ) =
1
N

N
i=1

gi(θ)gi(θ)
′.

Note that both �(θ0) and �(θ0) are consistent estimators of � = E[gi(θ0)gi(θ0)
′
] when E[gi(θ0)] = 0 holds. Also, �(θ0)

can be interpreted such that it uses the information that E[gi(θ0)] = 0 when it holds, since ḡN(θ0)
p

→ E[gi(θ0)] = 0.
In empirical studies using GMM, we first check the validity of moment conditions through the J test prior to inference of

the parameters of interest. The J test statistics are typically computed asJ = N · ḡN(θ)′�(θ)−1ḡN(θ), (1)J = N · ḡN(θ)′�(θ)−1ḡN(θ). (2)

Alternatively, we can consider

J̇ = N · ḡN(θ)′�(θ)−1ḡN(θ), (3)

whereJ and J̇ are related such that

J̇ =
NJ

(N − 1) +J . (4)

From this, it follows that J̇ <J . Then, under H0 : E[gi(θ0)] = 0 and the regularity conditions, it follows thatJ,J, J̇ d
→ χ2

m−p
as N → ∞, where m is fixed.

For later use, we reformulate statisticsJ ,J , and J̇ as follows:

J = N · ḡN(θ0)
′

�−1
0 −�−1

0 G(G′�−1
0 G)−1G′�−1

0

−1
ḡN(θ0) + op(1),

J = N · ḡN(θ0)
′

�−1
0 −�−1

0 G(G′�−1
0 G)−1G′�−1

0

−1
ḡN(θ0) + op(1) =J0 + op(1),

J̇ =J0 + op(1)

where�0 = �(θ0),�0 = �(θ0), G = plimN→∞ ∂ ḡN(θ0)/∂θ′ andJ0 = N · ḡN(θ0)
′

�−1
0 −�−1

0 G(G′�−1
0 G)−1G′�−1

0

−1
ḡN(θ0). We then reformulate these statistics. For this, we assume

that Gc is an m × (m − p) matrix whose columns are orthogonal to those of G; that is, G′
cG = 0. Then, using Lemma 1 of

Khatri (1966), we rewrite the above expressions as

J = N ·

G′

c ḡN(θ0)
′ G′

c
�−1

0 Gc

−1 
G′

c ḡN(θ0)

+ op(1), (5)

J = N ·

G′

c ḡN(θ0)
′ G′

c
�−1

0 Gc

−1 
G′

c ḡN(θ0)

+ op(1) =Jc0 + op(1), (6)

J̇ =Jc0 + op(1), (7)
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