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a b s t r a c t

Constrained estimators that enforce variable selection and grouping of highly correlated

data have been shown to be successful in finding sparse representations and obtaining

good performance in prediction. We consider polytopes as a general class of compact

and convex constraint regions. Well-established procedures like LASSO (Tibshirani,

1996) or OSCAR (Bondell and Reich, 2008) are shown to be based on specific subclasses

of polytopes. The general framework of polytopes can be used to investigate the

geometric structure that underlies these procedures. Moreover, we propose a specifi-

cally designed class of polytopes that enforces variable selection and grouping.

Simulation studies and an application illustrate the usefulness of the proposed method.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

We consider the linear normal regression model

y¼Xbþe, e�Nnð0,s2IÞ,

where the response y¼ ðy1, . . . ,ynÞ
T and the design X¼ ðx1j . . . jxpÞ are based on n iid observations. Since the methods

considered are not equivariant we will use standardized data. Therefore, y¼ ðy1, . . . ,ynÞ
T is the centered response and

xj ¼ ðx1j, . . . ,xnjÞ
T the j-th standardized predictor, j 2 f1, . . . ,pg, so that

Xn

i ¼ 1

yi ¼ 0,
Xn

i ¼ 1

xij ¼ 0,
Xn

i ¼ 1

x2
ij ¼ 1, 8j 2 f1, . . . ,pg

holds.
In normal distribution regression problems one typically uses the ordinary least squares estimator bbOLS. The underlying

loss function is the quadratic loss or sum of squares:

Q ðbjy,XÞ :¼ Jy�XbJ2

and bbOLS minimizes the unconstrained regression problem:

bbOLS ¼ argmin
b

Q ðbjy,XÞ:

When c is appropriately chosen the contours of the quadratic loss

Scðbjy,XÞ ¼ fb 2 Rp : Q ðbjy,XÞrcg
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form hyperellipsoids centered at bbOLS. Moreover, Q ðbjy,XÞ is an upper semicontinuous and strictly convex, which are
properties that guarantee a unique solution of constrained estimates.

Constraining the domain of b can be motivated by non-sample information given by some scientific theory. For
example in economical input–output-systems it is assumed that the inputs have a positive influence on the output. Then
the domain of the estimate is restricted by binput 40. More general, there is a mathematical motivation to constrain the
parameter domain of a regression problem. James and Stein (1961) proposed the first shrinkage estimator which became
known in the literature as James–Stein-estimator. The expression ‘‘shrinkage’’ is due to the geometrical interpretation of
Hoerl and Kennard (1970). Hoerl and Kennard (1970) described that the length of the OLS-vector jbbOLSj tends to be longer
than the length of the true parameter vector jbtruej. This effect can be overcome by restricting the parameter domain to a
centrosymmetric region around the origin of the parameter space.

Hoerl and Kennard (1970) used centered p-dimensional spheres with radius t which yields ridge regression. Centrosymmetric
regions around the origin are a general concept to compensate for the ‘‘jbtruejo jbbOLSj-effect’’ since the properties of the loss
function Q ðbjy,XÞ together with compactness and convexity of the domain guarantee existence and uniqueness of the solution.
In the following we will call regions with the three properties convexity, compactness, and centrosymmetry penalty regions.

The term penalty region is commonly used when the problem is represented in its penalized form. For some
constrained regression problems there exist alternative formulations which have equivalent solutions. For example, the
constrained version of the ridge estimator is

bb ¼ argmin
b

Jy�XbJ2, s:t:
Xp

j ¼ 1

b2
j rt, tZ0: ð1Þ

For fixed t the corresponding penalized regression problem has the form

bb ¼ argmin
b

Jy�XbJ2
þl

Xp

j ¼ 1

b2
j , lZ0: ð2Þ

The proof of the equivalence is based on the theory of Lagrangian multipliers and can be found in Luenberger (1969) where
the equivalence for a set of constraints is shown by using a vector kT

2 Rp. It should be noted that not every constrained
regression problem can be given as a penalized regression problem.

It is intuitively clear that a penalty region determines the properties of the estimate beyond tackling the ‘‘jbtruejo jbbOLSj-
problem’’. Therefore the penalty regions should be carefully designed. We will focus on two properties of estimates.

Variable selection: Coefficients whose corresponding predictors have vanishing or low influence on the response should
be shrunk to zero.

Grouping: For a group of highly correlated variables it can be advantageous that estimated coefficients differ not too strongly.
A well-established shrinkage procedure that includes variable selection is the LASSO (Tibshirani, 1996). One criticism of

the LASSO, which has been pointed out by Zou and Hastie (2005), is the behavior when predictors are highly correlated.
In that case the LASSO tends to select only one or two from the group of the correlated influential predictors. Therefore,
Zou and Hastie (2005) proposed the Elastic Net (EN) which tends to include the whole group of highly correlated predictors.
The EN enforces the grouping effect as stated in Theorem 1 of Zou and Hastie (2005) where a relation between sample
correlation and grouping was given. The EN does not use the sample correlation explicitly, the grouping effect is achieved
by a second penalty term together with a second tuning parameter which does not depend on the sample correlation. In a
similar way Bondell and Reich (2008) introduced the OSCAR by including an alternative penalty term that enforces
grouping. OSCAR also selects variables and shows the grouping effect. Also a relation between sample correlation and
grouping may be derived. An alternative penalty that explicitly uses the correlation and enforces the grouping property
was proposed by Tutz and Ulbricht (2009) under the name correlation-based penalty. Variable selection was obtained by
combining boosting techniques with the correlation-based penalty.

We will consider established procedures within the general framework of constraint regions based on polytopes and
introduce a correlation-based penalty region called V8, which groups and selects variables. In Section 2 we give some basic
concepts of polytope theory. Based on these concepts the LASSO is discussed in Section 2.2 and OSCAR in Section 2.3.
The embedding into the framework of polytopes allows to derive some new results for these procedures. In Section 3
we introduce the V8 procedure and give algorithms that solve the constrained least squares problem. In Section 4 the V8
procedure is compared to established procedures on the basis of simulations.

2. Polytopes as constraint region

Polytopes provide a simple class of compact and convex regions that are useful as constraint regions. They were
implicitly used in established regression procedures like LASSO (Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008).
In general, polytopal constrained regression problems can be reformulated as linear constrained regression problems
(cf. Theorem 1). But in practice it can be hard to reformulate the polytopal constrained regression problem as a linear
constrained problem. One objective of this article is to use geometrical arguments for analyzing and designing polytopal
penalty regions. In the following the geometric background and the mathematical foundation of polytopes is shortly
sketched.
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