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a b s t r a c t

k-Principal points of a random variable are k points that minimize the mean squared dis-
tance (MSD) between the random variable and the nearest of the k points. This paper fo-
cuses on finding optimal estimators of principal points in terms of the expected mean
squared distance (EMSD) between the random variable and the nearest principal point
estimator. These estimators are compared with nonparametric and maximum likelihood
estimators. It turns out that a minimum EMSD estimator of k-principal points of univariate
normal distributions is determined by the k-principal points of the t-distributionwith n+1
degrees of freedom, where n is the sample size. Extensions of the results to location-scale
families, multivariate distributions, and principal surfaces are also discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Principal points

A set of k-principal points (Flury, 1990) of a p-dimensional distribution is a set of k points that optimally approximates or
summarizes the distribution in terms of squared error loss. More precisely, let X be a p-dimensional random vector whose
components have finite second moments. Then, k points γ∗

1, . . . , γ
∗

k ∈ ℜ
p are called k-principal points of X if the k points

satisfy

E


min
j=1,...,k

∥X − γ∗

j ∥
2


≤ E


min
j=1,...,k

∥X − γ j∥
2


for any k points γ1, . . . , γk ∈ ℜ
p, where ℜ

p denotes the p-dimensional Euclidean space. Let

MSD(γ1, . . . , γk) = E


min
j=1,...,k

∥X − γ j∥
2

, (1)
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Table 1
k-Principal points of N(0, 1) for k = 1, . . . , 10.

k δ∗

1 δ∗

2 δ∗

3 δ∗

4 δ∗

5 δ∗

6 δ∗

7 δ∗

8 δ∗

9 δ∗

10 MSD

1 0 1
2 −

√
2/π

√
2/π 1 − 2/π

3 −1.2240 0 1.2240 0.1902
4 −1.5104 −0.4528 0.4528 1.5104 0.1175
5 −1.7241 −0.7646 0 0.7646 1.7241 0.0799
6 −1.8936 −1.0001 −0.3177 0.3177 1.0001 1.8936 0.0580
7 −2.0334 −1.1881 −0.5606 0 0.5606 1.1881 2.0334 0.0440
8 −2.1519 −1.3439 −0.7560 −0.2451 0.2451 0.7560 1.3439 2.1519 0.0345
9 −2.2547 −1.4764 −0.9188 −0.4436 0 0.4436 0.9188 1.4764 2.2547 0.0279

10 −2.3451 −1.5913 −1.0578 −0.6099 −0.1996 0.1996 0.6099 1.0578 1.5913 2.3451 0.0229

which is called themean squared distance (MSD). k-Principal points are defined as k points that minimizeMSD(γ1, . . . , γk).
We notice that if p = 1, then the MSD (1) can be re-expressed as

E


min
j=1,...,k

(X − γj)
2

,

where X is a univariate random variable and γ1, . . . , γk ∈ ℜ. This paper mainly focuses on principal points of univariate
distributions (p = 1), although extensions to multivariate distributions (p ≥ 2) are also discussed.

The mean of a distribution is the optimal (in terms of squared error loss) single point approximation to a probability
distribution. k-Principal points can be viewed as a generalization of the mean from one point to k points and in fact, the
1-principal point of a random vector X is always given by the mean E[X]. The k-principal points γ ∗

1 , . . . , γ
∗

k of a univariate
normal distribution N(µ, σ 2) can be expressed in the form

γ ∗

j = µ+ δ∗

j σ , j = 1, . . . , k, (2)

where δ∗

1 , . . . , δ
∗

k are the k-principal points of the univariate standard normal distribution N(0, 1). The corresponding MSD
can be obtained bymultiplying theMSD for k-principal points of theN(0, 1) distribution by σ 2. For reference, the k-principal
points δ∗

1 , . . . , δ
∗

k of the univariate standard normal distributionN(0, 1) and theirMSDs for k = 1 to 10 are shown in Table 1.

The k = 2-principal points of N(0, 1) are ±


2
π
; for k > 2, the principal points must be determined numerically. (Note that

Table 1 reproduces results previously published, for instance, in Table 1 for k = 1, . . . , 5, in Flury (1990) and Table 5.1
for k = 1, . . . , 8, in Graf and Luschgy (2000).) From Table 1, we see that the k-principal points are symmetric about the
mean, and dense near the mean but are sparse near the tails whichmirrors the normal density function that is concentrated
symmetrically about the mean with low probability in the tails. Table 2 shows the k-principal points of the t-distribution
with ν degrees of freedom for ν = 3, 4, 6, 11 and k = 1, 2, 3, 5, 10. (Note that the second moment of the t-distribution on
ν = 1 and 2 degrees of freedom is not defined and hence neither are the principal points for ν = 1, 2.)We note in Section 2.1
that the k-principal points of a normal distribution are unique for all values of k and the k-principal points of a t-distribution
(with degrees of freedom ≥3) are also unique for k = 1 and 2. However, the uniqueness of k > 2 principal points of t-
distributions has not been proven. Hence, the results of Table 2 are not ensured to give actual k-principal points with k ≥ 3,
but other sets of k points giving smaller MSD than the k points in Table 2 have not been found. The results of Tables 1 and 2
indicate that the k-principal points of the t-distributions aremore spread than those ofN(0, 1) and the principal points of the
t-distribution with smaller degrees of freedom are more spread than the k-principal points of the t-distribution with larger
degrees of freedom, which reflects the fact that the t-distributions have heavier tails than N(0, 1) and the t-distributions
with smaller degrees of freedom have heavier tails than the t-distributions with larger degrees of freedom.

1.2. Connections to self-consistency, optimal partitioning, k-means clustering, and vector quantization

For a random vector X , and a set of k points γ1, . . . , γk, the MSD(γ1, . . . , γk) (1) can be re-expressed as

E


k

j=1

∥X − γ j∥
2I(X ∈ Cj)


,

where I(·) denotes the indicator function and

Cj = {x ∈ ℜ
p

| ∥x − γ j∥ < ∥x − γ l∥, l = 1, . . . , j − 1, ∥x − γ j∥ ≤ ∥x − γ l∥, l = j + 1, . . . , k}, j = 1, . . . , k. (3)

Principal points are closely related to the notion of self-consistency (Tarpey and Flury, 1996). A set of k points γ1, . . . , γk is
called a set of k-self-consistent points of a random vector X if the following equations are satisfied:

E[X |X ∈ Cj] = γ j, j = 1, . . . , k.
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