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a b s t r a c t

It is widely known that structural break tests based on the long-run variance estimator,
which is estimatedunder the alternative, suffer fromserious size distortionwhen the errors
are serially correlated. In this paper, we propose bias-corrected tests for a shift in mean
by correcting the bias of the long-run variance estimator up to O(1/T ). Simulation results
show that the proposed tests have good size and high power.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Testing for structural breaks has been a longstanding problem and various tests have been proposed in the econometric
and statistical literature. One of the frequently used tests for parameter constancy against the general alternative is the
CUSUM test based on recursive residuals proposed by Brown et al. (1975), and this test was further developed based on
OLS residuals by Ploberger and Krämer (1992). By specifying a random walk as the alternative, optimal tests for parameter
constancy were investigated by Nyblom and Mäkeläinen (1983), Nyblom (1986, 1989), and Nabeya and Tanaka (1988),
among others, while the point optimal test for general regression models was studied by Elliott and Müller (2006). On
the other hand, it is often the case that a one-time structural change with an unknown change point is considered as the
alternative and the sup-type test by Andrews (1993) and the mean- and exponential-type tests developed by Andrews and
Ploberger (1994) and Andrews et al. (1996) are widely used in practical analyses. For a general discussion on structural
changes, see, for example, Csörgő and Horváth (1997), Perron (2006), and Aue and Horváth (2013).

In practice, when we test for structural breaks in time-series models, we need to take serial correlation into account, and
thus we have to estimate the long-run variance of the errors. If we estimate the long-run variance under the null hypothesis
of no structural breaks, then it is known that the above tests suffer from the so-called non-monotonic power problem, that
is, the power initially rises under the alternative, but as the magnitude of the break increases, the power eventually falls
and tends to zero. This problem was investigated by Vogelsang (1999), Crainiceanu and Vogelsang (2007), Deng and Perron
(2008), and Perron and Yamamoto (forthcoming). The reason for this problem is that the long-run variance estimator takes
significantly large values as the magnitude of the break increases.
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On the other hand, if we estimate the long-run variance under the alternative, then the tests suffer from size distortion;
they tend to over-reject the null hypothesis. This is because the long-run variance is under-estimated, so that the test
statistics tend to take large values under the null hypothesis of no break.

In order to cope with the problem associated with the estimation of the long-run variance, several methods have been
proposed. Kejriwal (2009) proposed to estimate the long-run variance using the residuals under both the null and alternative
hypotheses. By using this hybrid estimator, we can reduce size distortion, but the power becomes extremely low when the
error is strongly serially correlated. Juhl andXiao (2009) proposed to estimate the long-run variance using the residuals of the
nonparametric regression to mitigate the non-monotonic power problem. However, the finite sample performance of this
test crucially depends on the choice of the bandwidth in the nonparametric regression. While these papers tried to improve
the accuracy of the long-run variance estimator, there are several methods with which we do not have to consistently
estimate the long-run variance. Sayginsoy and Vogelsang (2011) and Yang and Vogelsang (2011) proposed fixed-b sup-
Wald and fixed-b sup-LM tests, respectively, which are robust to I(0)/I(1) errors. The fixed-b framework is based on Kiefer
and Vogelsang (2005), which used an inconsistent long-run variance estimator where the bandwidth is proportional to the
sample size. The fixed-b sup-Wald and sup-LM tests have relatively good sizes under the null hypothesis, but there is a loss
of power due to the inconsistent estimation of the long-run variance. On the other hand, Shao and Zhang (2010) proposed
a self-normalized test based on the CUSUM test. The basic idea of self-normalization is similar to the fixed-b approach.
Although the finite sample performance of these tests are improved, compared to the frequently used tests, such as the
original CUSUM and sup-type tests, the existing methods do not seem to be satisfactory in terms of both size and power.

In this paper, we develop an accurate long-run variance estimator and propose to use it to improve the finite sample
property of the structural change tests. This estimator can be obtained by correcting the bias up to O(T−1), where T is the
sample size. The key feature of our method is that bias correction is achieved by taking a structural break into account.
The advantage of our method is that tests with our long-run variance estimator can control the empirical size well, while
maintaining high power. The simulation results show that the proposed tests have a higher power than other tests, such as
the fixed-b test. Moreover, the power difference between our bias-corrected tests and the original (bias-uncorrected) tests
is very minor, and it becomes negligible as the sample size increases. This result is in contrast to some other tests, which
suffer from asymptotic power loss.

The remainder of this paper is organized as follows. In Section 2, we introduce the model and the test statistic. The
derivation of the bias term is discussed in Section 3, and the bias correction method is explained in Section 4. The case with
general error processes is discussed in Section 5. Simulation results are given in Section 6, and Section 7 concludes the paper.
All mathematical proofs are delegated to the Appendix.

2. Model and test statistic

Let us consider the following mean-shift model:

yt = µ+ δ · DUt(T 0
b )+ ut , t = 1, . . . , T , (1)

where DUt(T 0
b ) = 1{t > T 0

b }, and 1{·} is the indicator function. We assume that ut is a zero-mean stationary process and
that the break date T 0

b is unknown.
The testing problem is

H0 : δ = 0 vs. H1 : δ ≠ 0. (2)

Under H0, there is no shift in mean, whereas under H1, there is a one-time break.
In order to test for a shift in mean, we need to estimate the long-run variance of ut defined byω =


∞

ℓ=−∞
E(utut−ℓ) for

the scale adjustment, which can be consistently estimated by the kernel method. As it is known that tests with ω estimated
under the null hypothesis suffer from the non-monotonic power problem, as pointed out by Vogelsang (1999), we exclude
the case where the long-run variance is estimated under the null hypothesis, and focus on the case where it is estimated
under the alternative of a one-time break. That is, we consider the following kernel estimator of ω as a benchmark:

ω̂(Tb) = γ̂0 + 2
T−1
j=1

k


j
m


γ̂j, (3)

where k(·) is the kernel function, m is the bandwidth, γ̂j is the estimator of the jth autocovariance of ut defined by
γ̂j = T−1T

t=j+1 ût ût−j, the residuals ût are obtained under the alternative with the supposed break date Tb, and

ût =


yt − ȳ1 for t = 1, . . . , Tb,
yt − ȳ2 for t = Tb + 1, . . . , T , (4)

where ȳ1 = T−1
b
Tb

t=1 yt and ȳ2 = (T − Tb)−1T
t=Tb+1 yt . Note that Tb is specified by a researcher and it is not necessarily

consistent with T 0
b . We suppress the dependency of γ̂j and ût on Tb for notational simplicity.
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