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a b s t r a c t

Over the past three decades, interest in cheap yet competitive variance estimators in non-
parametric regression has grown tremendously. One family of estimators which has risen
to meet the task is the difference-based estimators. Unlike their residual-based counter-
parts, difference-based estimators do not require estimating the mean function and are
therefore popular in practice. Thiswork further develops the difference-based estimators in
the repeatedmeasurement setting for nonparametric regressionmodels. Three difference-
based methods are proposed for the variance estimation under both balanced and un-
balanced repeated measurement settings: the sample variance method, the partitioning
method, and the sequencing method. Both their asymptotic properties and finite sample
performance are explored. The sequencingmethod is shown to be themost adaptive while
the sample variance method and the partitioning method are shown to outperform in cer-
tain cases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the nonparametric regression model with repeated measurement data,

Yij = f (xi) + εij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (1)

where Yij are observations, xi are design points, f is an unknown mean function, and εij are independent and identically
distributed (i.i.d.) random errors with mean zero and variance σ 2. In this paper we are interested in estimating the residual
variance σ 2. Needless to say, an accurate estimate of σ 2 is desired in many situations, e.g., in testing the goodness of fit and
in deciding the amount of smoothing (Carroll, 1987; Carroll and Ruppert, 1988; Eubank and Spiegelman, 1990; Gasser et al.,
1991). Over the past three decades, interest in cheap yet competitive variance estimates in the nonparametric setting has
grown tremendously. One family of estimators which has generated great interest and has become an important tool for
this purpose is the difference-based estimators. Unlike their residual-based counterparts, difference-based estimators do
not require the estimation of the mean function, which involves nonparametric estimation procedures, and have therefore
become quite popular in practice.

In the simple situationwhenm = 1, there already exist a large body of difference-based estimators in the literature (Dette
et al., 1998). In this case, model (1) reduces to

Yi = f (xi) + εi, i = 1, 2, . . . , n, (2)
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where Yi are observations, and εi are i.i.d. random errors with mean zero and variance σ 2. Assume that 0 ≤ x1 ≤ · · · ≤

xn ≤ 1, and define the order of a difference-based estimator to be the number of observations involved in calculating a local
residual. von Neumann (1941) and Rice (1984) proposed the following first-order estimator,

σ̂ 2
R =

1
2(n − 1)

n
i=2

(Yi − Yi−1)
2. (3)

Gasser et al. (1986) and Hall et al. (1990) extended the idea behind the first-order estimator and proposed some higher
order difference-based estimators. Dette et al. (1998) pointed out that none of the fixed order difference-based estimators
can achieve the same asymptotically optimal rate as that is achieved by the residual-based estimators (Hall and Marron,
1990). Müller et al. (2003), Tong et al. (2008) and Du and Schick (2009) proposed covariate-matched U-statistic estimators
for the residual variance.

Recently, Tong andWang (2005) and Tong et al. (2013) proposed some least squares methods for estimating the residual
variance, motivated by the fact that the Rice estimator (3) is always positively biased. For the equally-spaced design, let

σ̂ 2
R (r) =

1
2(n − r)

n
i=r+1

(Yi − Yi−r)
2, r = 1, 2, . . . .

Assuming that f has a bounded first derivative, they showed that E{σ̂ 2
R (r)} l σ 2

+ Jdr + o(dr), where dr = r2/n2 and
J =

 1
0 {f ′(x)}2dx/2. To reduce the positive bias Jdr , they constructed a linear regression model

σ̂ 2
R (r) = σ 2

+ Jdr + ξr , r = 1, 2, . . . , r0, (4)

where ξr are random errors and r0 = o(n) is the chosen bandwidth. Let N = nr0 − r0(r0 + 1)/2 be the total number of
difference pairs involved in (4). They assignedwr = (n− r)/N as the weight of σ̂ 2

R (r), and estimated the residual variance as
the intercept through the weighted least squares regression. They further showed that the asymptotic optimal bandwidth
is hopt = {28nσ 4/Var(ε2)}1/2 with the corresponding mean squared error (MSE) as

MSE(hopt) =
1
n
Var(ε2) +

9
√
7

28n3/2
σ 2

{Var(ε2)}1/2 + o


1
n3/2


.

Whenm > 1, we have repeatedmeasurements. Repeatedmeasurement data are commonly available in many statistical
problems. How to take advantage of the repeated measurements and develop a variance estimator that has the same
advantage of not requiring amean estimation is of great importance. Despite the rich literature on difference-based variance
estimation for model (2), very little attention has been paid to model (1) with m ≥ 2. Gasser et al. (1986) encountered
the multiple measurements issue, but they decided to order the data sequentially and treat them as if they came from
different design points. Thus, the multiple measurements feature is ignored. This is quite a pity, since intuitively the
repeated measurement data contain different type of information, and this new information should be taken into account
in constructing estimators. We suspect that one reason very few work is available for treating multiple observations in
difference based variance estimation literature is that it is not easy to combine the between-design-point difference and the
within-design-point difference properly. In addition, even if a certain new treatment is proposed, it is not straightforward
to analyze how effective this treatment is in theory. For example, it is difficult to know if the treatment has optimal
large sample property, in other words, it is difficult to know if a better method can be found in treating the multiple
measurements, either within the difference based method family or overall. In this work, we will fill this literature in both
aspects. Specifically,wewill propose three newdifference basedmethods to utilize themultiplemeasurements, respectively
the sample variancemethod, the partitioningmethod and the sequencingmethod.We analyze thesemethods and illustrate
the practical advantages of each method under different data structures and/or model assumptions. In addition, we will
show that one of our proposals, the sequencing method is indeed optimal in that it is root-n consistent and it reaches the
minimum asymptotic estimation variability among all possible consistent estimators.

The rest of the paper is organized as follows. In Section 2,we propose three difference-basedmethods for estimatingσ 2 in
nonparametric regression with repeatedmeasurement data: the sample variance method, the partitioning method, and the
sequencing method. We also explore their asymptotic properties, especially for the proposed sequencing estimator, where
we derive its MSE, its optimal bandwidth and its asymptotic normality. In Section 3, we derive the optimal efficiency bound
of any estimation procedure and show that the proposed sequencing estimator reaches this universal optimal efficiency
bound. Extensive simulation studies are conducted in Section 4 to evaluate and compare the finite sample performance of the
proposed estimators to the residual-based estimator. We then extend the methods to the nonparametric regression models
with unbalanced repeated measurement data in Section 5. Also, we demonstrate the practical application of proposed
methods with one real data example in Section 6. Finally, we conclude the paper in Section 7 with a brief discussion and
provide all the technical proofs in the Appendices.
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