
Isomorphism check in fractional factorial designs via letter
interaction pattern matrix

Yang Liu a, Jian-Feng Yang b,�, Min-Qian Liu b

a Department of Statistics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2
b Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

a r t i c l e i n f o

Article history:

Received 29 October 2010

Received in revised form

21 March 2011

Accepted 29 March 2011
Available online 2 April 2011

Keywords:

Coset pattern matrix

Fractional factorial design

Isomorphism

Letter pattern matrix

a b s t r a c t

Two fractional factorial designs are considered isomorphic if one can be obtained from

the other by relabeling the factors, reordering the runs, and/or switching the levels of

factors. To identify the isomorphism of two designs is known as an NP hard problem. In

this paper, we propose a three-dimensional matrix named the letter interaction pattern

matrix (LIPM) to characterize the information contained in the defining contrast

subgroup of a regular two-level design. We first show that an LIPM could uniquely

determine a design under isomorphism and then propose a set of principles to

rearrange an LIPM to a standard form. In this way, we can significantly reduce the

computational complexity in isomorphism check, which could only take

Oð2p
ÞþOð3k3ÞþOð2k

Þ operations to check two 2k�p designs in the worst case. We also

find a sufficient condition for two designs being isomorphic to each other, which is very

simple and easy to use. In the end, we list some designs with the maximum numbers of

clear or strongly clear two-factor interactions which were not found before.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fractional factorial designs, especially with two levels, are among the most popular experimental designs in practice.
Two factorial designs are called isomorphic if one can be obtained from the other by relabeling the factors, reordering the
runs and/or switching the levels of factors. Xu and Wu (2001) pointed out that two isomorphic designs have the same
statistical properties in the classic ANOVA model. Thus they are considered to be equivalent in most studies in
experimental designs. When constructing designs, isomorphic designs bring redundant computation work. Therefore, it
is important and necessary to find a good method to check design isomorphism.

For two 2k�p designs, which are expressed by their design matrices, a complete search for checking all possible
reordering and relabeling needs Oðn!k!2p

Þ comparisons, where n¼ 2k�p denotes the number of runs. As n or k increases, the
computational complexity grows exponentially, which is known as an NP hard problem. For regular two-level fractional
factorial designs, given by the defining contrast subgroup (DCS, Wu and Hamada, 2000), isomorphic designs only need to
be detected through factor relabeling. The computational complexity, however, is still Oðk!Þ for a complete isomorphism
check. For non-regular designs, all three kinds of transformations need to be checked. Hence, isomorphism check for non-
regular designs is more complicated than that for regular designs. In all, an efficient method for checking factor relabeling
is important for both regular and non-regular designs. In this paper, we only consider the case of regular two-level designs.
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Isomorphism check has received a great deal of attention in the literature, see Chen et al. (1993), Clark and Dean (2001),
Ma et al. (2001), Sun et al. (2002), Block and Mee (2005), and Lin and Sitter (2008) for details. Traditionally, the word
length pattern (WLP) W ¼ ðA1,A2, . . . ,AkÞ is used to characterize the aliasing pattern of a 2k�p design d. However, it is easy to
find non-isomorphic designs with the same word length pattern. Draper and Mitchell (1968) proposed the letter pattern
matrix (LPM) L¼ ðlijÞ, where lij denotes the number of words that involve letter i and have length j, and conjectured that an
LPM could uniquely determine a design under isomorphism. But a counterexample was found by Chen and Lin (1991).
Then, Zhu and Zeng (2005) proposed the coset pattern matrix (CPM), which is a 2k�p

�k matrix including the word length
pattern and all the 2k�p

�1 cosets of the DCS. But it still fails to determine a design uniquely.
Here is an example to illustrate the definition of WLP, LPM and CPM.

Example 1. For the 26�2 design d1 defined by I¼123¼1456¼23456, the WLP is the vector W¼(0,0,1,1,1,0) and the LPM is
the 6�6 matrix:

1 2 3 4 5 6

0 0 1 1 0 0

0 0 1 0 1 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 1 1 0

0 0 0 1 1 0

where the ith row is the letter pattern of factor i. For example, the letter 1 appears in a word of length three (123) and a
word of length four (1456), thus the (1,3) and (1,4) entries in the LPM are both 1.

There are 15 cosets of the DCS for design d1. The coset involving a main effect is called a m.e. coset (Zhu and Zeng, 2005).
The six m.e. cosets are

1¼ 23¼ 456¼ 123,456,

2¼ 13¼ 3456¼ 12,456,

3¼ 12¼ 2456¼ 13,456,

4¼ 156¼ 1234¼ 2356,

5¼ 146¼ 1235¼ 2346,

6¼ 145¼ 1235¼ 2345:

In each coset, the words are sorted according to their lengths, which follows relevant requirements in Zhu and Zeng
(2005). The CPM for these m.e. cosets is as follows.

1 2 3 4 5 6

1 1 1 0 0 1

1 1 0 1 1 0

1 1 0 1 1 0

1 0 1 2 0 0

1 0 1 2 0 0

1 0 1 2 0 0

Take the first m.e. coset (1¼23¼456¼123456) as an example. There is one word of length 1 (i.e., letter 1), one word of
length 2 (i.e., 23), one word of length 3 (i.e., 456) and one word of length 6 (i.e., 123456), so the first three entries and the
last one in the first row are 1’s.

As for the computational complexity, Chen et al. (1993) checked all possible permutations of factors, which needs
ð k
k�pÞðk�pÞ! comparisons for two 2k�p designs. Clark and Dean (2001) performed kðk!Þ2 comparisons in the worst case and

each comparison needs O(n!) operations in the isomorphism check of two 2k�p designs. Ma et al. (2001) requires Oðn2k2k
Þ

comparisons, each of which needs to compare 2kþ1 centered L2-discrepancy values. Lin and Sitter (2008) proposed a
method combining word length pattern and eigenvalues, which is more efficient than the above methods in some
occasions. But a major drawback of this method is that the computation of eigenvalue for an mnn matrix is Oðmn3Þ, which
will cause more computing burden for isomorphism check when the number of factors is relatively large.

As for the construction, a 2k�p design could be obtained by selecting a subset from the column set C ¼ fC1,C2, . . . ,
C2k�p

�1g, including k�p independent columns and p additional columns, where Ci denotes the binary sequence of i. For
example, C1 is ð10000Þ0, C31 is ð11111Þ0 (see, for example, Chen et al., 1993; Zhang et al., 2008 for details). When k and p are
relatively large, it is impractical to find non-isomorphic designs from all the ð2

k�p
�1�ðk�pÞ

p Þ possible designs constructed this
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