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This paper compares the Bayesian and frequentist approaches to testing a one-sided

hypothesis about a multivariate mean. First, this paper proposes a simple way to assign

a Bayesian posterior probability to one-sided hypotheses about a multivariate mean.

The approach is to use (almost) the exact posterior probability under the assumption

that the data has multivariate normal distribution, under either a conjugate prior in

large samples or under a vague Jeffreys prior. This is also approximately the Bayesian

posterior probability of the hypothesis based on a suitably flat Dirichlet process prior

over an unknown distribution generating the data. Then, the Bayesian approach and a

frequentist approach to testing the one-sided hypothesis are compared, with results

that show a major difference between Bayesian reasoning and frequentist reasoning.

The Bayesian posterior probability can be substantially smaller than the frequentist

p-value. A class of example is given where the Bayesian posterior probability is basically

0, while the frequentist p-value is basically 1. The Bayesian posterior probability in

these examples seems to be more reasonable. Other drawbacks of the frequentist

p-value as a measure of whether the one-sided hypothesis is true are also discussed.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that n i.i.d. realizations fXig
n
i ¼ 1 of a d-dimensional random variable X are observed. The distribution of X is

assumed to have first and second moments m0 and S0, respectively. It is often important to test the null hypothesis that
m0Z0, either from the Bayesian perspective (e.g., a posterior probability) or the frequentist perspective (e.g., a p-value).
Under affine transformation of X, this describes also statements that various components of m0 are weakly greater than (or
weakly less than) known constants. Inference on m0Z0 has been previously studied by Perlman (1969), who takes a
frequentist perspective and assumes that X is known to be multivariate normal. Related literature from a frequentist
perspective includes Kodde and Palm (1986), Kudô (1963), Nüesch (1966), and Wolak (1989).

The hypothesis that m0Z0 is of interest in many situations, just a few of which are described here. Consider an
experimental study where there are dþ1 ‘‘treatments,’’ each of which result in a scalar outcome. Suppose that a total of n

experimental subjects experience each of the treatments and the resulting outcomes fYi,tg
n,dþ1
i ¼ 1,t ¼ 1 are observed.1 Define

Xit ¼ Yi1�Yi,tþ1, the difference in outcome between treatments 1 and tþ1. The experimental question may be whether
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under additional assumptions about the assignment of treatments to subjects and assumptions like that different subjects, each of which experience one

treatment, may be considered to be the ‘‘same’’ subject.
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treatment 1 dominates all of the remaining treatments on average, corresponding to the statement that m0Z0 with
respect to X.

Alternatively, the experimental question may concern a treatment with many scalar outcomes. It could be the case that
a treatment is intended to improve one outcome, but with possible side effects on other outcomes. An experimental
question may be whether the treatment has non-negative average effect on all of these side effect outcomes.

Another application concerns moment inequality conditions, an important generalization of moment equality
conditions. Moment inequality conditions are often found to be a convenient way to characterize a model in which the
parameter of interest is only partially identified; see, for example, Manski (2007). A moment inequality condition specifies
that a parameter y satisfies the moment inequality conditions EðmðZ,yÞÞZ0, where m is a possibly vector-valued function
of the observed data Z and the parameter y. The statistical question concerns determining which parameter values satisfy
this condition. The issue of partial identification arises because typically many different values of y satisfy this condition. If
X ¼mðZ,yÞ then the statement that m0Z0 is a statement that y satisfies the moment inequality conditions. For the moment
inequality condition problem in particular there is a large recent literature in econometrics including Andrews and
Guggenberger (2009), Andrews and Jia (unpublished), Andrews and Soares (2010), Beresteanu and Molinari (2008), Bugni
(2010), Canay (2010), Chernozhukov et al. (2007), Imbens and Manski (2004), Pakes et al. (2006), Romano and Shaikh
(2008, 2010), Rosen (2008), and Stoye (2009). None of these papers address the problem from a Bayesian perspective, and
some use the extra parametric structure of the moment inequality conditions. Liao and Jiang (2010) address the moment
inequality condition problem from a Bayesian perspective, based on a limited information likelihood. The focus of their
paper is on the parameter y, as their procedure admits a prior over the parameter y that is not admitted in the approach
considered here, and results in a posterior distribution for y. The difference is because the focus of this paper is on the
general problem of testing m0Z0, including comparing the Bayesian approach to a frequentist approach, and not
specifically on the extra parametric structure of the moment inequality conditions. Thus, Liao and Jiang (2010) and this
paper provide complementary results to the literature on moment inequality conditions. Another related paper is Moon
and Schorfheide (2009) who investigate the relationship between Bayesian and frequentist inference in partially identified
models, of which moment inequality conditions are examples. Again, the focus is on the parameter y. In their model they
find a result similar to the result of this paper, that a frequentist confidence set for y may be larger than the Bayesian
credible set for y. The results of this paper, applied to moment inequality conditions, complement and help explain this
result.

The case d¼1 has been considered previously, including comparing the Bayesian approach with a frequentist approach,
for example by Casella and Berger (1987). This paper complements Casella and Berger (1987) by considering similar
questions in the case of more than one dimension. Casella and Berger (1987) are able to conclude, in contrast to the case of
a point null hypothesis as in Lindley (1957), Berger and Delampady (1987), or Berger and Sellke (1987), that the Bayesian
posterior probability can equal the frequentist p-value when considering a one-sided null hypothesis about a one-
dimensional parameter, based on an improper flat prior. This paper comes to an opposite conclusion about the case d41.2

In the case that d41, the Bayesian posterior probability of m0Z0 can be substantially smaller than the frequentist p-value
for testing m0Z0.

This paper proposes a Bayesian approach to the problem of testing m0Z0 by providing a posterior probability of m0Z0,
and justifies the approach on Bayesian grounds in two different ways. The asymptotic properties of the Bayesian posterior
probability are derived, and a frequentist procedure is also described. Next, the Bayesian approach and the frequentist
approach are compared. It is shown that for some data the Bayesian posterior probability and frequentist p-value are very
different, especially when the dimension d is large. It is argued that the Bayesian posterior probability seems more
reasonable than the frequentist p-value. Also, comparing two different hypotheses, the frequentist p-value may be higher
for hypotheses that are logically stronger. The Bayesian posterior probability does not exhibit this incoherent behavior.
Moreover, comparing two different possible datasets, the frequentist p-value may be lower after observing data that is
apparently more supportive of m0Z0. The Bayesian posterior probability exhibits a monotonicity. It is argued by proving
an impossibility theorem that at least some of these properties are necessarily generic for any frequentist approach. All
proofs are in the appendix.

Part of this paper presumes that it is interesting to compare the Bayesian posterior probability and the frequentist
p-value.3 Consequently this paper is in the tradition of a variety of results that do exactly this. Papers that compare the
Bayesian posterior probability (or other Bayesian measure of evidence) and frequentist p-value include some of those
already discussed, including Lindley (1957), Berger and Delampady (1987), Berger and Sellke (1987), and Casella and

2 The Casella and Berger (1987) sense of the Bayesian posterior probability equaling the frequentist p-value involves studying the infimum of the

Bayesian posterior probability over a class of reasonable priors. They focus on data that is ‘‘supportive’’ of the alternative hypothesis. For some classes of

priors, after observing data supportive of the alternative hypothesis the infimum of the Bayesian posterior probability equals the frequentist p-value,

while for other classes the infimum may be smaller than the frequentist p-value. The prior achieving the infimum of the posterior probabilities, when it

equals the frequentist p-value, is the ‘‘uninformative’’ improper flat prior on the real line. Similarly, the approach taken in this paper is to study the

Bayesian posterior probability under an ‘‘uninformative’’ prior, or when the data dominates the prior. In contrast to the Casella and Berger (1987) results

finding equality, the posterior probability proposed here can be substantially smaller than the frequentist p-value when d is sufficiently large, a difference

which could only be increased by taking an infimum over a larger class of priors.
3 I thank a referee for comments that led to a revision and improvement of this discussion.
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