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a b s t r a c t

Two latin squares are orthogonal if, when they are superimposed, every ordered pair
of symbols appears exactly once. This definition extends naturally to ‘incomplete’ latin
squares each having a hole on the same rows, columns, and symbols. If an incomplete
latin square of order n has a hole of order m, then it is an easy observation that n ≥ 2m.
More generally, if a set of t incomplete mutually orthogonal latin squares of order n have a
commonhole of orderm, then n ≥ (t+1)m. In this article,we prove such sets of incomplete
squares exist for all n,m ≫ 0 satisfying n ≥ 8(t + 1)2m.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A latin square is an n × n array with entries from an n-element set of symbols such that every row and column is a
permutation of the symbols. Often the symbols are taken to be from [n] := {1, . . . , n}. The integer n is called the order of
the square.

Two latin squares L and L′ of order n are orthogonal if {(Lij, L′

ij) : i, j ∈ [n]} = [n]2; that is, two squares are orthogonal if,
when superimposed, all ordered pairs of symbols are distinct. The following arrangement of playing cards illustrates a pair
of orthogonal latin squares of order 4.

Euler’s famous ‘36 officers problem’ asks whether there exists a pair of orthogonal latin squares of order six. The answer
in that case is negative.

A family of latin squares in which any pair are orthogonal is called a set of mutually orthogonal latin squares, or ‘MOLS’
for short. The maximum size of a set of MOLS of order n is denoted by N(n). It is easy to see that N(n) ≤ n − 1 for n > 1,
with equality if and only if there exists a projective plane of order n. Consequently, N(q) = q − 1 for prime powers q. Using
number sieves and some ‘gluing’ constructions, it has been shown in Beth, 1983 (building upon Chowla et al., 1960; Wilson,
1974a) that N(n) ≥ n1/14.8 for large n.

In this article, we are interested in an ‘incomplete’ variant onMOLS. First, an incomplete latin square of order nwith a hole
of order m is an n × n array L = (Lij : i, j ∈ [n]) on n symbols (let us say [n] for convenience) together with a hole M ⊆ [n]
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such that

• Lij is empty if {i, j} ⊆ M;
• Lij contains exactly one symbol if {i, j} ⊈ M;
• every row and every column in L contain each symbol at most once; and
• symbols inM do not appear in rows or columns indexed byM .

Note thatM is often taken to be an interval of consecutive rows/columns/symbols (but need not be). The definition is meant
to extend to any set of symbols (and corresponding hole symbols). One feature of incomplete latin squares is that they can
‘frame’ latin subsquares on the hole. An example in the case n = 5,m = 2 is shown below.

3 4 5
4 5 3

3 4 1 2 5
4 5 2 3 1
5 3 4 1 2

Two incomplete latin squares L, L′ on [n] with common holesM are orthogonal if

{(Lij, L′

ij) : {i, j} ⊈ M} = [n]2 \ M2,

and as before we can have sets of mutually orthogonal incomplete latin squares. A set of t such incomplete squares of order
n with holes of order m is denoted by t-IMOLS(n;m). Note that the case m = 0 or 1 reduces to ordinary MOLS. For one
noteworthy example, there exist 2-IMOLS(6; 2) (see Colbourn (2006) for instance) despite the nonexistence of orthogonal
latin squares of order 6 (or 2).

It is a straightforward counting argument (see Horton (1974)) that the existence of t-IMOLS(n;m) requires

n ≥ (t + 1)m. (1.1)

The special case t = 1 recovers the familiar condition that latin subsquares cannot exceed half the size of their embedding.
On the other hand, n ≥ 2m is sufficient for the existence of an incomplete latin square of order nwith a hole of orderm. For
t = 2, 3, the inequality (1.1) is known to be sufficient, except for small cases; see Heinrich and Zhu (1986) and Abel and Du
(2003). The best presently known result for t = 4 is a by-product of work on 6-IMOLS(n;m) in Colbourn and Zhu (1995),
and so in this case n ∼ 7m is a barrier. This gives some evidence of the difficulty of constructing t-IMOLS(n;m) near the
bound for general t .

For our main result, we prove sufficiency for large n and m when (1.1) is strengthened a little.

Theorem 1.1. There exist t-IMOLS(n;m) for all sufficiently large n,m satisfying n ≥ 8(t + 1)2m.

We actually obtain Theorem 1.1 as a consequence of a more general result on pairwise balanced block designs with
holes. The corresponding ‘inequality’ we obtain in this more general case is probably far from best possible, but it reduces to
a reasonable condition for our application to IMOLS. The next three sections of the article are devoted to the development
and proof of our result on designs with holes. In Section 5, we conclude with a proof of Theorem 1.1 and discussion of a few
related items.

2. Background on block designs

Let v be a positive integer and K ⊆ Z≥2 := {2, 3, 4, . . .}. A pairwise balanced design PBD(v, K) is a pair (V , B), where

• V is a v-element set of points;
• B ⊆ ∪k∈K


V
k


is a family of subsets of V , called blocks; and

• every two distinct points appear together in exactly one block.

In a PBD(v, K), the pairs covered by each block must partition


V
2


. In addition, for any point x ∈ V , the remaining v − 1

points must partition into ‘neighborhoods’ in the blocks incident with x. It is helpful to think of the resulting divisibility
restrictions as, respectively, ‘global’ and ‘local’ conditions, which we state below (in reverse order).

Proposition 2.1. The existence of a PBD(v, K) implies

v − 1 ≡ 0 (mod α(K)) and (2.1)
v(v − 1) ≡ 0 (mod β(K)), (2.2)

where α(K) := gcd{k − 1 : k ∈ K} and β(K) := gcd{k(k − 1) : k ∈ K}.

The sufficiency of these conditions for v ≫ 0 is a celebrated result due to Richard M. Wilson.
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