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1. Introduction

In numerous applications, one considers regression modeling to assess the impact of a d-dimensional vector of covari-
ates X on a scalar response variable Y. It is then classical to consider the conditional mean and variance functions

x+— E[Y|X =x] and x~ Var[Y|X =x], (1.1)

respectively. A much more thorough picture, however, is obtained by considering, for various @ € (0, 1), the conditional
quantile functions

x> go(x) = infly e R: F(y|x) > a}, (1.2)

where F( - |x) denotes the conditional distribution of Y given X = x. These conditional quantile functions completely
characterize the conditional distribution of Y given X, whereas (1.1), in contrast, only measures the impact of X on Y’s
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location and scale, hence may completely miss to capture a possible impact of X on the shape of Y’s distribution, for
instance.

An important application of conditional quantiles is that they provide reference curves or surfaces (the graphs of x —
qu (x) for various o) and conditional prediction intervals (intervals of the form I, (x) = [q,(x), g1« (x)], for fixed x) that are
widely used in many different areas. In medicine, reference growth curves for children’s height and weight as a function of
age are considered. Reference curves are also of high interest in economics (e.g., to study discrimination effects and trends
in income inequality), in ecology (to observe how some covariates can affect limiting sustainable population size), and in
lifetime analysis (to assess influence of risk factors on survival curves), among many others.

Quantile regression, that concerns the estimation of conditional quantile curves, was introduced in the seminal pa-
per Koenker and Bassett (1978), where the focus was on linear regression. Since then, there has been much research on
quantile regression, in particular in the nonparametric regression framework. Kernel and nearest-neighbor estimators of
conditional quantiles were investigated in Bhattacharya and Gangopadhyay (1990), while Yu and Jones (1998) focused on
local linear quantile regression and double-kernel approaches. Many other estimators were also considered; see, among
others, Fan et al. (1994), Gannoun et al. (2002), Heagerty and Pepe (1999), or Yu et al. (2003). In this work, we introduce a
new nonparametric regression quantile method, based on optimal quantization.

In probability theory, optimal quantization refers to the problem of finding the best approximation of a continuous d-
dimensional probability distribution P by a discrete probability distribution charging a fixed number N of points. In other
words, the d-dimensional random vector X needs to be approximated by a random vector X" that may assume at most N
values. Quantization was extensively investigated in (numerical) probability, finance, stochastic processes, and numerical
integration (see, e.g., Zador (1964), Pages (1998), Pagés et al. (2004a,b), and Bally et al. (2005)), but it was barely used in
statistics—Sliced Inverse Regression (Azais et al., 2012) and clustering (Fischer, 2010, 2014) are the only statistical appli-
cations we are aware of. Yet, quantization is a natural tool in nonparametric quantile regression. In this context, indeed,
quantization automatically takes care of the localization-in-x required in any nonparametric regression method. The result-
ing quantization-based estimators inherently are based on adaptive bandwidths, hence may dominate the local constant
and local linear estimators from Yu and Jones (1998), that typically involve a unique global bandwidth. Quantization-based
estimators also provide a refinement over nearest-neighbor estimators (such as those from Bhattacharya and Gangopad-
hyay (1990)) since, unlike the latter, the number of “neighbors” the former consider depends on the point x at which q,, (x)
is to be estimated.

The outline of the paper, that mostly focuses on theoretical aspects, is as follows. Section 2 discusses quantization and
provides some results on quantization, both of a theoretical and algorithmic nature. Section 3 describes how to approximate
conditional quantiles through optimal quantization, which is achieved by replacing X in the definition of conditional
quantiles by its L,-optimal quantized version X" (for some fixed N). The convergence rate of this approximation to the
true conditional quantiles is obtained. Section 4 defines the corresponding estimator and proves its consistency (for the
fixed-N approximated conditional quantiles). The results are illustrated on a numerical example, in which a smooth variant
of the proposed estimator based on the bootstrap is also introduced. Section 5 provides some final comments. Eventually,
the Appendix collects technical proofs.

2. Optimal quantization

In this section, we define the concept of L,-norm optimal quantization and state the main results that will be used in the
sequel (Section 2.1). Then we describe a stochastic algorithm that allows to perform optimal quantization (Section 2.2), and
provide some convergence results for this algorithm (Section 2.3).

2.1. Definition and main results

Let X be a random d-vector defined on a probability space (§2, #, P), with distribution Px, and fix a real number p > 1
such that E[|X|P] < oo (throughout, | - | denotes the Euclidean norm). Quantization replaces X with an appropriate random
d-vector 7 (X) that assumes at most N values. In optimal L,-norm quantization, the vector 7 (X) minimizes the L,-norm
quantization error

7 (X) — X|lp, with||Z], :== (E[|Z|P])”p.

This optimization problem is equivalent to finding an N-grid of RY — 3N, say — such that the projection X" = Proj, v (X)

of X on the (Euclidean-)nearest point of the grid minimizes the quantization error ||)~(VN — X|lp. This definition leads to two
natural questions: does such a minimum always exist? How does this minimum behave as N goes to infinity?

Existence (but not unicity) of an optimal N-grid - that is, a grid minimizing this quantization error - has been obtained
under the assumption that Px does not charge any hyperplane; see Pages (1998). Irrespective of the sequence of optimal
grids considered, XN converges to X in L,. This is a direct corollary of the following result, which is often referred to as Zador’s
theorem (Zador, 1964) and provides the rate of convergence of the quantization error; see, e.g., Graf and Luschgy (2000) for
a proof.
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