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There is much literature on statistical inference for distribution under missing data, but

surprisingly very little previous attention has been paid to missing data in the context of

estimating distribution with auxiliary information. In this article, the auxiliary

information with missing data is proposed. We use Zhou, Wan and Wang’s method

(2008) to mitigate the effects of missing data through a reformulation of the estimating

equations, imputed through a semi-parametric procedure. Whence we can estimate

distribution and the tth quantile of the distribution by taking auxiliary information into

account. Asymptotic properties of the distribution estimator and corresponding sample

quantile are derived and analyzed. The distribution estimators based on our method are

found to significantly outperform the corresponding estimators without auxiliary

information. Some simulation studies are conducted to illustrate the finite sample

performance of the proposed estimators.
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1. Introduction

Estimation of distribution is very important in order to make statistical inference for parameters or functions
of parameters based on distribution. The well-know estimator of distribution is the empirical distribution that is
consistent and asymptotic normal. Some stronger consequences imply the empirical distribution converges uniformly to
the true distribution, and the empirical process approximates to a standard Wiener process. The empirical distribution
can be used to construct a Kolmogorov–Smirnov test for null hypothesis distribution is known F0. It is known that
the empirical distribution is a non-parametric maximum estimator of unknown distribution without any
auxiliary information. However, in practice, some auxiliary information can often be obtained, such as, unknown
distribution is symmetric or the variance of population is a function of mean. The first motivation in this paper is
to take into account auxiliary information, and then improves efficiency of distribution estimation (Qin and Lawless, 1994).
An interesting question is how to improve efficiency of distribution estimator when the unknown distribution is
symmetric or has a mean zero or variance is a function of mean. The question of estimation for symmetric distribution
of Y can be viewed as estimating equation estimation. The unbias estimating function cðY ,mÞ can be described
as follows:

E½cðY ,mÞ� ¼ 0,
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where

cðY ,mÞ ¼
Y�m
ðY�mÞ3

 !
ð1:1Þ

or

cðY ,mÞ ¼
Y�m

1=2�IðYrmÞ

 !
, ð1:2Þ

where I(A) is an indicator function taking on the value of 1 if event A occurs and 0 otherwise. The parameter of primary
interest is distribution F, but mean m is a nuisance parameter. Note that the second function in (1.2) is discontinuous.
Similarly, when variance is a function of mean, the estimating function can be

cðY ,mÞ ¼
Y�m

ðY�mÞ2�gðmÞ

 !
, ð1:3Þ

where gðmÞ ¼VarðYÞ, and g is a known function.
In incomplete data sets, estimation of distribution function is also arguably important on statistical inference. There are

many important distributions appearing in literature, for example, Kaplan and Meier (1958) gave a well-known
Kaplan–Meier estimator for censored data; Lynden-Bell (1971) driven a product-limit estimator for truncated data; Tsai
et al. (1987) obtained an estimator of distribution for truncated and censored data; Groeneboom and Wellner (1992)
described a non-parametrical maximum likelihood estimator of distribution for interval censored data. More estimators for
different incomplete data, see Turnbull (1976), Tsai and Crowley (1985), Reiss (1981) and Qin and Lawless (1994). Cheng
and Chu (1996) suggested an estimator of distribution based on non-parametric kernel regression with missing data. But
surprisingly very little previous attention has been paid to missing data in the context of estimating distribution with
auxiliary information. In practice, it is often possible that we may have more auxiliary information which is unavailable
under the assumptions of Cheng and Chu (1996). By using the auxiliary information, as we expect, we can increase the
efficiency of the resulting estimator. From (1.1) and (1.3), auxiliary information can be expressed some estimating
functions. Assume that we have auxiliary information that is a set of unbiased estimation functions
cðy,z,yÞ ¼ ðc1ðy,z,yÞ, . . . ,cqðy,z,yÞÞT which satisfy the moment restrictions of the form

EcðY ,Z,yÞ ¼ 0, ð1:4Þ

where Y is an i.i.d. response variable with unknown distribution function F and covariate Z, y is a p-dimensional unknown
parameter vector and qZp. Alternatively, we can consider the auxiliary information that is a set of unbiased estimation
equations cðy,zÞ ¼ ðc1ðy,zÞ, . . . ,cqðy,zÞÞT with the moment restrictions of the form EcðY ,ZÞ ¼ 0, in which we remove the
parameter y, that is, we have known the true value of parameter y. For example, if we know a symmetric distribution F

with mean zero, then we know that median of F is zero. Therefore, we have EcðY ,0Þ ¼ 0 for c in (1.2). In this paper, we
focus mainly on estimating distribution function F of response variable Y with above auxiliary information both including
the unknown parameter y and without parameter, where Y may be missing. The methodology of analyzing data with
missing is a very common issue today. We begin our analysis by considering a random sample of incomplete data:

ðYi,Zi,diÞ, i¼ 1,2, . . . ,n,

where Zi’s are observed covariate of dimension d, Yi can be observed if di ¼ 1, otherwise di ¼ 0 and Yi is missing. Let Xi be Zi

or a sub-set of Zi.
We focus on the case where the data are missing at random (MAR), i.e., the missing mechanism is independent of the

unobserved data and is ignorable, which is the most commonly adopted baseline of analysis in the missing data literature.
See for example, Cheng (1994), Chu and Cheng (1995), Cheng and Chu (1996), among others. The assumption of MAR
implies that d and Y are conditionally independent given X, i.e.,

Pðd¼ 1jX,YÞ ¼ Pðd¼ 1jXÞ ¼ PðXÞ,

or in other words, given the observed data, the missing mechanism does not depend on the unobserved data. The MAR
assumption is practically justified in many situations (see Little and Rubin, 1987). All our theoretical results in fact hold
also for the situation of the covariate’s data being missing, see Zhou et al. (2008).

There are many methods to deal with missing data, such as EM algorithm (Dempster et al., 1977), inverse probability-
weighted approach (Robins et al., 1994) and imputation scheme (Yate, 1933; Bartlett, 1937; Healy and Westmacott, 1956).
Of particular relevance here is the kernel non-parametric imputation method discussed in Cheng (1994) and Cheng and
Chu (1996). Wang and Rao (2002) extended this work by considering the same imputation scheme in conjunction with the
empirical likelihood (EL) approach in making inference for the unknown mean. In recent decades, the method of EL has
taken much of the spotlight in the statistical field since it was introduced by Owen (1988). This non-parametric method of
inference has sampling properties similar to the bootstrap. It has been discussed by Owen (1990), Qin and Lawless (1994,
1995), among others. Zhou et al. (2008) combined the estimating equations (EE) and EL theory together with missing data
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