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a b s t r a c t

Many recent applications of nonparametric Bayesian inference use random partition

models, i.e. probability models for clustering a set of experimental units. We review the

popular basic constructions. We then focus on an interesting extension of such models.

In many applications covariates are available that could be used to a priori inform the

clustering. This leads to random clustering models indexed by covariates, i.e., regression

models with the outcome being a partition of the experimental units. We discuss some

alternative approaches that have been used in the recent literature to implement such

models, with an emphasis on a recently proposed extension of product partition

models. Several of the reviewed approaches were not originally intended as covariate-

based random partition models, but can be used for such inference.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

We review probability models for random partitions. In particular we are interested in random partition models in the
presence of covariates. In other words, we discuss regression models where the outcome is an arrangement of
experimental units in clusters.

Let S={1,y,n} denote a set of experimental units. A partition is a family of subsets S1,y,Sk with S¼ S1 [ . . . [ Sk,
Sj \ Sj0 ¼ |. We write rn ¼ fS1, . . . ,Skg. The random number of clusters, k, is part of rn. When the sample size n is understood
from the context we drop the subindex and write r. Sometimes it is technically more convenient to describe a partition by
a set of cluster membership indicators si with si= j if i 2 Sj, i=1,y,n. Let sn ¼ ðs1, . . . ,snÞ. Finally, let kn denote the number of
clusters. Again, we drop the index n if the sample size is understood. The number of clusters k is implicitly coded in sn and
rn. We write nnj ¼ jSjj for the size of the j-th cluster. Again, we drop the subscript n if the underlying sample size is
understood from the context.

A random partition model is a probability model pðrnÞ. Two basic properties are desirable for random partition models.
The model should be exchangeable with respect to permutations of the indices of the experimental units. Let
p¼ ðp1, . . . ,pnÞ denote a permutation of S, and let sp ¼ ðsp1

, . . . ,spn Þ describe the clusters implied by re-labeling experimental
unit i by h¼ p�1

i , i.e., ph ¼ i. We require

pðsÞ ¼ pðspÞ
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for all partitions p. A second important property is that the model should scale across sample sizes. We want

pðsnÞ ¼
Xkn þ1

j ¼ 1

pðsn,snþ1 ¼ jÞ:

We refer to these two properties as symmetry and scalability. A probability model on rn that satisfies the two conditions is
called an exchangeable product partition function (EPPF) (Pitman, 1996). Exploiting the invariance with respect to
relabeling the EPPF can be written as p(nn1,y,nnk).

Several probability models pðrnÞ are used in the recent literature, including product partition models (PPM), species
sampling models (SSM) and model based clustering (MBC). The SSM and MBC satisfy the requirements of symmetry and
scalability by definition, but not all PPMs do. See, for example, Quintana (2006) for a recent review.

Usually the model is completed with a sampling model for observed data y¼ ðy1, . . . ,ynÞ given rn. A typical sampling
model defines independent sampling across clusters and exchangeability within clusters. In the following discussion we
assume that this is the case. We do so for the benefit of a more specific discussion, but without loss of generality.
We represent exchangeability within clusters as independent sampling given cluster specific parameters xj:

pðyjrnÞ ¼
Yk

j ¼ 1

Z Y
i2Sj

pðyijx
%

j Þdpðx%

j Þ: ð1Þ

For example, pðyijx
%

j Þ could be a normal model Nðx%

j ,SÞ, and the prior pðx%

j Þ could be a conjugate normal prior. In the
following discussion we focus on the prior model pðrnÞ, and assume (1) when a specific sampling model is required. Little
changes in the discussion if the sampling model is of a different form.

The most popular choice for pðrnÞ in the recent Bayesian literature is the special case of the random partition implied by
the Dirichlet process (DP) prior (Ferguson, 1973; Antoniak, 1974). DP priors are probability models for unknown
distributions G, i.e., the DP is a probability model on probability models. We write G�DPða,G%Þ. The base measure
parameter G% defines the prior mean, EðGÞ ¼ G%. The total mass parameter a is a precision parameter. One of the important
properties is the a.s. discrete nature of G. This property can be exploited to define a random partition by considering a
sequence of i.i.d. draws, xi � G; i¼ 1, . . . ,n. The discrete nature of G implies positive probabilities for ties among the xi.
Let fx%

1, . . . ,x%

kg denote the unique values among the xi and define Sj ¼ fi : xi ¼ x%

j g. The implied probability model on
rn ¼ ðS1, . . . ,SkÞ is known as the Polya urn scheme. Let ½x�m ¼ x � ðxþ1Þ � . . . � ðxþm�1Þ denote the Pochhammer symbol.
The Polya urn defines

pðrnÞ ¼
ak
Qk

j ¼ 1ðnj�1Þ!

½a�n
: ð2Þ

Model (2) can be written as pðrnÞp
Qk

j ¼ 1 cðSjÞ, with cðSjÞ ¼ aðnj�1Þ! Models of the form pðrnÞp
Q

cðSjÞ for general c(Sj)
are known as PPMs (Hartigan, 1990; Barry and Hartigan, 1993).

Equivalently the Polya urn can be characterized by the predictive probability function (PPF), that is

pjðrnÞ � pðsnþ1 ¼ jjs1, . . . ,snÞp
nj j¼ 1, . . . ,kn

a j¼ knþ1

(
ð3Þ

It is easily verified that the Polya urn defines indeed an EPPF. Models that are characterized by a sequence of PPFs
fpjðrnÞ, j¼ 1, . . . ,k and n¼ 1,2, . . .g and that satisfy the symmetry and scalability requirements are known as SSMs (Pitman,
1996).

Probability models for random partitions are now routinely used in Bayesian data analysis. In this article we discuss an
extension to probability models for random partitions indexed with covariates. An interesting example is reported in Dahl
(2008). Proteins are clustered on the basis of three-dimensional structure. Structure is recorded as a sequence of seven
characteristic angles of the backbone. Let RMSD denote the (root) minimum Euclidean distance between any two proteins,
after optimally aligning the two molecules. Dahl (2008) argues that proteins with small RMSD should be a priori more
likely to co-cluster than others. In other words the prior probability model on clustering should be indexed with covariates.

Let xi denote the covariates that are specific to experimental unit i and write xn ¼ ðx1, . . . ,xnÞ. We consider models of the
form pðrnjxnÞ. But more generally, the covariates need not be indexed by experimental units. Several of the following
models only require that covariates can be grouped by cluster. For example, in Dahl (2008) the covariates are RMSD and are
specific to any pair of proteins. Partition models with covariates are useful in many applications, but for a relative lack of
standard methods are not currently used extensively.

The rest of this article is organized as follows. In Sections 2–5 we discuss models for random partitions with covariates
based on several alternative approaches, including augmented response vectors, dependent DP models, and hierarchical
mixture of experts models. In Section 6 we review in more detail an approach based on extending the product partition
model.
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