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a b s t r a c t

Multivariate local regression is an important tool for image processing and analysis. In

many practical biomedical problems, one is often interested in comparing a group of

images or regression surfaces. In this paper, we extend the existing method of testing

the equality of nonparametric curves by Dette and Neumeyer (2001) and consider a test

statistic by means of an L2
�distance in the multi-dimensional case under a completely

heteroscedastic nonparametric model. The test statistic is also extended to be used in

the case of spatial correlated errors. Two bootstrap procedures are described in order to

approximate the critical values of the test depending on the nature of random errors.

The resulting algorithms and analyses are illustrated from both simulation studies and a

real medical example.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Medical images are increasingly used in health care and biomedical research and a wide range of imaging modalities are
now available. Statistical image analysis, hence, becomes an active research area. Nonparametric regression techniques
have been broadly applied to image analysis, including image reconstruction, denoising and interpolation. An image can be
considered as a surface of the image intensity at each pixel. A regression surface from a noisy image is often fitted by local
smoothing procedures (Qiu, 1998; Takeda et al., 2007). Based on the nonparametric modeling framework, one object of
primary interest is to compare a set of smoothed images or regression surfaces. For example, one often exams the equality
of two or more images under different clinical conditions in medical applications.

Nonparametric comparison of a set of regression curves has been paid considerable attentions in both theoretical and
applied regression analysis. Much effort has been devoted to this problem in the literature. Hall and Hart (1990) and King
et al. (1991) had early considerations of the problem, where they discussed a completely nonparametric homoscedastic
model in the case of equal design points. While Kulasekera (1995) proposed several alternative tests in the case of unequal
design points, Young and Bowman (1995) generalized the one-way analysis of variance (ANOVA) to the nonparametric
regression setting. Hardle and Mammen (1990) considered a method based on a weighted L2

�distance for semiparametric
comparison of regression curves. Dette and Neumeyer (2001) discussed three methods using nonparametric estimators of
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the regression function in the problem of testing the equality of k regression curves from independent samples. Their first
test was based on a linear combination of variance estimators; the second approach was an ANOVA-type method; and the
third test compared the differences between the estimates of the individual regression curves by means of an L2

�distance.
Recent contributions on this problem include Pardo-Fernandez et al. (2007) and Pardo-Fernandez (2007) among others.
Several new testing statistics have been discussed such as Kolmogorov–Smirnov type and Cramer–von Mises type
statistics. A good and recent review on this topic can be found in Neumeyer and Dette (2003).

Nonparametric comparison of different images or regression surfaces relates to nonparametric analysis of covariance
with multiple covariates. It is important to extend the methods for nonparametric curve comparison to the multi-
dimensional case with applications to image analysis. Recently, Bowman (2006) suggested a generalization of the ANOVA-
type test by Young and Bowman (1995) to compare regression surfaces. Under the assumptions of equal homoscedastic
variances in all groups and normal distributed errors, Bowman (2006) proposed a w2�approximation of the corresponding
test statistic under the null hypothesis. In this paper, we discuss the comparison of regression surfaces under a general
model which does not require any additional assumptions (such as homoscedasticity or normality of errors, equal design
points). In Section 2, we review the classic framework of local regression for image data and suggest a generalization of
Dette and Neumeyer (2001)’s test, a test procedure based on an L2

�distance of regression surfaces under a general
heteroscedastic model. The asymptotic results of the proposed test statistic are presented here. We also extend the test
statistic to be used in the case of spatial correlated errors. Two bootstrap procedures are described in order to approximate
the critical values of the test. In Section 3, we present numerical examples. Simulation studies are conducted to investigate
the finite sample properties of the proposed test. A real data analysis is performed to illustrate the use of our method. The
paper ends with the concluding remarks in Section 4.

2. Testing the equality of images and regression surfaces

2.1. Local surface model for images

An image can be represented as a function mð�Þ from a plane R2 to p-variate space Rp, where the value of mð�Þ in the jth
coordinate represents its intensity. The dimension of m(�), p, can be 41. For instance, p=3 for a natural color image,
representing the three primary colors. For simplicity and clarity we will treat only the case p=1, while the methodology is
similar in other cases. In image application, the function mð�Þ is assumed to be a smooth function of X 2 R2. We only have
discrete data on the model with the X variable restricted to a regular or irregular grid and the intensity values observed are
often measured with noise. In general, this model can be formalized as

Yj ¼mðXjÞþsiðXjÞej, j¼ 1, . . . ,n, ð2:1Þ

where ej are independent and identically distributed random variables, which represents random errors in the
observations. We further assume that ej have zero mean and finite variance 1.

Using the data (Xj, Yj), j=1,y,n, we want to construct a ‘‘denoised’’ image, an estimator of the regression function mð�Þ

which is the conditional expectation of the dependent variable Y given the independent variable X,

mðxÞ ¼ EðY jX¼ xÞ:

Local smoothing method is an important tool in image processing and analysis (Wand and Jones, 1995; Takeda et al., 2007).
We now describe how to construct a smoothed image by local approximations of mð�Þ, using a least-squares method with
kernel weights.

The Taylor’s expansion of the regression function at Xj implies that,

mðXjÞ � b0þbT
1ðXj�xÞþbT

2 vech fðXj�xÞT ðXj�xÞgþ � � � ,

where vechð�Þ returns the vector obtained by eliminating all supradiagonal elements of the square matrix and stacking the
result one column above the other. b0 ¼mðxÞ is the pixel value of interest and the vectors b1 and b2 are
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Estimating b¼ ½b0,bT
1,bT

2 , . . . �T can be through solving the following least squares problem,

min
b

Xn

j ¼ 1

fYj�b0�bT
1ðXj�xÞ�bT

2 vech fðXj�xÞT ðXj�xÞg� � � � g2KHðx�XjÞ:

The weight function (kernel function) KH(x)=det(H)�1 K(H�1x) is defined on the multivariate space, hence observations
close to a fitting point x receive large weights. H is a bandwidth matrix which is symmetric positive-definite and det(H) is
the determinant of the matrix H. The local least squares estimator of m(x) is

m̂HðxÞ ¼ eT
1ð
~X

T
W ~XÞ�1 ~X

T
WY, ð2:2Þ
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