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a b s t r a c t

The paper considers a problem of equality of two covariance operators. Using functional
principal component analysis, a method for testing equality of K largest eigenvalues and
the corresponding eigenfunctions, together with its generalization to a corresponding
change point problem is suggested. Asymptotic distributions of the test statistics are
presented.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The statistical inference where the objects of interest are random functions has recently become popular, see e.g. Bosq
(2000), Ferraty (2011) and Horváth and Kokoszka (2012), because objects of interest are often continuous functions. Even if
the measurements are taken discretely in many points it is assumed that the observed values are some noisy measurements
of a quantity that is a continuous function in reality.

The problem that motivated our study came from civil engineering where the behavior of a tunnel primary lining
thickness along the tunnel was studied. In any of N profiles in distances fjΔ; j¼ 1;…;Ng from the tunnel entrance the
thickness was measured in pðpbNÞ equidistant points from left to right. There are two ways we can proceed. As the distance
Δ was relatively large we can suppose that our observations fX j ¼ ðXjð1Þ;…;XjðpÞÞT ; j¼ 1;…;Ng form a sequence of
independent random vectors. The other possibility is to approximate the multidimensional vectors by continuous smooth
functions. Then, the observations fXjðtÞ;0≤t≤1g; j¼ 1;…;N form a sequence of independent random functions. The basic
question may be whether the basic stochastic characteristics, i.e., the mean functions mjðtÞ ¼ EXjðtÞ as well as covariance
operators Aj defined by covariance functions Ajðs; tÞ ¼ EXjðtÞXjðsÞ remain the same for all j¼ 1;…;N or whether there exists a
point j0 (a change point) such that the characteristics before and after the change point differ. The problem belongs to the
change point analysis. The methods for detecting a change in mean function were studied by Aue, Gabrys et al. (2009). Here,
we consider a problem of detecting a change in a covariance function supposing that m1ðtÞ ¼⋯¼mNðtÞ for t∈½0;1�.

Besides application in civil engineering, the problem of detecting change(s) in the stochastic behavior of functional data
or random vectors with many components may be encountered in many other fields, e.g. in climatology and hydrology
when stationarity of annual cycles is studied. Here, changes may be caused by all types of human activity. Heat islands of big
cities not only increase mean winter temperature but also decrease its variability. Deforestation of certain areas may be a
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cause of more frequent summer floods. Many authors, e.g. Aue, Hörmann et al. (2009) or Wied et al. (2011, 2012) present
applications of change point detection of covariance structures in an analysis of time series of stock indices. Horváth et al.
(2010) present an application to detect breaks in a time series of credit card transactions and Galeano and Peña (2009) in
price indices.

We start with a two-sample decision problem on the equality of two covariance operators A and B. The problem was
introduced in Benko et al. (2009) and studied by Panaretos et al. (2010). Panaretos et al. (2010) mentioned that the extension of
finite dimensional procedures can lead to complications, as the infinite-dimension version of the problem constitutes an ill-
posed inverse problem. This is also true when the operators A and B are finite-dimensional but the numbers of observations are
smaller than their dimension. Panaretos et al. (2010) suggested to choose a set of functions ϕ1;…;ϕp and check whether
〈ϕi; ðA−BÞϕi′〉¼ 0 for 1≤i≤p, 1≤i′≤p. It is clear that using a finite set of test functions, one cannot generally find all departures
from A¼ B if A and B are infinite dimensional. Even if their dimension is finite but very large, one would have to use a
correspondingly large set of fϕig. On the other hand, the test functions fϕig may be chosen to detect departures from A¼ B that
are of special interest to us. Clearly, in test procedures the functions fϕig may be chosen to be functions of observations.

In our paper we decide to check whether 〈uk; ðA−BÞuk〉¼ 0 as well as 〈vk; ðA−BÞvk〉¼ 0 for k¼ 1;…;K , where fukg are
eigenfunctions of A that correspond to K largest eigenvalues fλkg, k¼ 1;…;K of A, and fvkg are eigenfunctions of B that
correspond to K largest eigenvalues fμkg; k¼ 1;…;K of B. This is true if and only if AK ¼ BK , where the operator AK

corresponds to the function AK ¼∑K
k ¼ 1λkukðtÞukðsÞ and the operator BK corresponds to the function BK ¼∑K

k ¼ 1μkvkðtÞvkðsÞ
and this is true if and only if λ1 ¼ μ1;…; λK ¼ μK and u1 ¼ v1;…;uK ¼ vK .

It may happen that we are interested in detection of AK≠BK , i.e., we consider to test the null hypothesis AK ¼ BK against
the alternative AK≠BK . If the hypothesis AK ¼ BK is rejected, we may be interested in the question which sources caused the
rejection. If the hypothesis AK≠BK is not rejected and if ∥A−AK∥ as well as ∥B−BK∥ are relatively small, we may conclude
that if A and B differ from each other, then they differ only slightly.

Frommany examples of principal component analysis we know that for some data a small number K of sources exist that
are able to express a large proportion of total variability. The favorable situation occurs when K is known apriori from a
similar type of data. For instance, analyzing covariance matrices of 365-dimensional vectors that correspond to smooth
annual cycles of 16 small Czech rivers in the period 1935–1996, we have seen that the four largest principle components
explained 76–83% and the five largest principle components 82–88% of the total variance. (The vectors were obtained by
smoothing daily values by a kernel smoothing technique using the Epanechnikov window with a bandwidth of h¼15.)
These principle components explained the most important sources of variance, i.e., the time and length of the spring high
discharge period caused by snow melting, and variability of mean winter discharges. If, for example, we would like to test
the stability of covariance matrices of smoothed annual cycles for a small Czech river, we would use K¼5. If we do not have
such prior information we may try to choose K based on proportions of K principle components in the estimated total
variability.

In change point analysis we usually test a null hypothesis H0
cp claiming that all observations have the same distribution

against an alternative claiming that at some unknown time point a specific characteristic of distribution has changed.
Derivation of a test statistic in change point detection usually has two steps. First, an appropriate test statistic for two-
sample problems for a fixed and known change point is suggested. If the change point is unknown, one can calculate such a
test statistic for any possible change point 1≤j≤N so that a sequence of test statistics is obtained. Then, the test statistic for
an unknown change point is a certain functional of that sequence, usually a sum or a maximum. In our paper we
recommend applying a sum of weighted two-sample statistics with weights that decrease with N1N2=N

2 where N1 and N2

corresponds to a number of observations in the first part, respectively of the second part of the series.
In the two-sample problem the asymptotic distribution under H0 of the suggested test statistics is a χ2 distribution. The

proof can be obtained similarly as in Panaretos et al. (2010) for Gaussian processes or in Fremdt et al. (2012) for non-
Gaussian processes. In the corresponding change point problem we show that under the null hypothesis the test statistic
converges in distribution to a integral of a sum of squares of independent Brownian bridges.

The paper is organized as follows. In Section 2 we suggest the test statistics for the two-sample problem in case of
Gaussian processes as well as non-Gaussian processes and derive their asymptotic distribution. In Section 3 we suggest the
test statistics for the corresponding change-point problem for both Gaussian processes and non-Gaussian processes and
derive their asymptotic distribution. In Section 4 we present two applications. The first one comes from civil engineering
and was motivation for our study of the corresponding change point problem. The second application comes from
climatology and the goal of a statistic inference was a comparison of annual cycles of Milan and Padua temperature series.

2. Two-sample test

We observe two independent sequences of i.i.d. zero mean processes X1ðtÞ;…;XN1 ðtÞ and Y1ðtÞ;…;YN2 ðtÞ defined for
t∈½0;1� such that E

R 1
0 X4

1ðtÞ dto∞ and E
R 1
0 Y4

1ðtÞ dto∞. Let N¼N1 þ N2. We suppose that the covariance functions
Aðt; sÞ ¼ E X1ðtÞX1ðsÞ and Bðt; sÞ ¼ E Y1ðtÞY1ðsÞ are continuous functions on ½0;1�2. We denote the corresponding covariance
operator of X1 defined by the kernel Aðt; sÞ by A and the covariance operator of Y1 defined by the kernel Bðt; sÞ by B

ðAvÞðtÞ ¼
Z 1

0
Aðt; sÞvðsÞ ds; ðBÞvðtÞ ¼

Z 1

0
Bðt; sÞvðsÞ ds; v∈L2½0;1�:
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