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The objective of this paper is to construct covariance matrix functions whose entries are

compactly supported, and to use them as building blocks to formulate other covariance

matrix functions for second-order vector stochastic processes or random fields. In terms

of the scale mixture of compactly supported covariance matrix functions, we derive a

class of second-order vector stochastic processes on the real line whose direct and cross

covariance functions are of Pólya type. Then some second-order vector random fields in

Rd whose direct and cross covariance functions are compactly supported are con-

structed by using a convolution approach and a mixture approach.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider an m-variate stochastic process or random field fZðxÞ ¼ ðZ1ðxÞ, . . . ,ZmðxÞÞ
0,x 2 Dg, which is a family of real

random vectors on the same probability space, where the index set D could be a temporal domain like Z, R, or a spatial
domain like Zd, Rd, with d a natural number. When all of its components have second-order moments, fZðxÞ,x 2 Dg
is called a second-order vector (or multivariate) random field, and its covariance matrix (function) is defined by

Cðx1,x2Þ ¼ EfðZðx1Þ�EZðx1ÞÞðZðx2Þ�EZðx2ÞÞ
0
g, x1,x2 2 D:

Its diagonal entry Ciiðx1,x2Þ, the covariance function of the ith component random field fZiðxÞ,x 2Dg, is called a direct
covariance (function), and its off-diagonal entry Cijðx1,x2Þ (iaj), the covariance between the ith component random field
fZiðxÞ,x 2 Dg and the jth component random field fZjðxÞ,x 2 Dg, is called a cross covariance (function), i,j¼ 1,2, . . . ,m.
For properties of second-order vector random fields, see Cramer and Leadbetter (1967), Gikhman and Skorokhod (1969),
Ma (2011a–d), among others. Moreover, fZðxÞ,x 2 Dg is said to be a (weakly, second-order) stationary or homogeneous
random field, if its mean function EZðxÞ, x 2 D, is a constant vector, and its covariance matrix function Cðx1,x2Þ depends on
the lag x1�x2 only, x1, x2 2D. In such a case, we simply write Cðx1�x2Þ for Cðx1,x2Þ as usual, although it is a kind of abuse
of the notation.
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We say that an m-variate random field fZðxÞ,x 2 Dg is an elliptically contoured (or spherically invariant) one, if it adopts
the decomposition

ZðxÞ ¼UZ0ðxÞþmðxÞ, x 2 D,

where mðxÞ is an m-dimensional (nonrandom) vector, U is a nonnegative random variable, and fZ0ðxÞ,x 2Dg is an m-variate
zero-mean Gaussian random field and is independent of U. The term is so-called because the finite-dimensional
distributions of such a random field are elliptically contoured (Fang et al., 1990). Clearly, a vector Gaussian random field
is an elliptically contoured one, while an elliptically contoured one may not have second-order moments. Given a real
m�m matrix function Cðx1,x2Þ,x1,x2 2 D, it is shown in Ma (2011a) that there is an m-variate second-order elliptically
contoured random field fZðxÞ,x 2 Dg with mean zero and with Cðx1,x2Þ as its covariance matrix if and only if
fCðx1,x2Þg

0 ¼ Cðx2,x1Þ and the inequality

Xn

i ¼ 1

Xn

j ¼ 1

a0iCðxi,xjÞajZ0 ð1Þ

holds for every natural number n, any xk 2 D, and any ak 2 R
m, k¼ 1, . . . ,n. However, the above conditions may not be

sufficient for other random fields, such as those in Matheron (1989), Emery (2010), and Ma (2011d). It would be of interest
to identify other non-Gaussian random fields with the above conditions as sufficient conditions, besides the elliptically
contoured one. Nevertheless, for simplicity, by a covariance matrix (function) in this paper we mean the covariance matrix
(function) of a second-order elliptically contoured vector random field. Examples of elliptically contoured vector random
fields include Gaussian, Student’s t, hyperbolic, stable, Mittag-Leffler, Linnik, and logistic vector random fields; see Røislien
and Omre (2006), Du and Ma (2011), Ma (2011a), Du et al. (2012), among others.

The objective of this paper is to construct covariance matrix functions whose entries are compactly supported, and to
use them as building blocks to formulate other covariance matrix functions. By a compactly supported function in Rd we
mean a function whose values are zero outside a compact set in Rd. One such an example on the plane is the circular
covariance function derived by Dalenius et al. (1961),

CðxÞ ¼
arccosðJxJÞ�JxJð1�JxJ2

Þ
1=2, JxJr1,

0, JxJ41,x 2 R2,

(

where JxJ denotes the usual Euclidean norm of x. Another example is the so-called spherical correlation model in R3,

CðxÞ ¼
1� 3

2
JxJ
a þ

1
2
JxJ3

a3 , JxJra,

0, JxJ4a,x 2 R3,

(

where a is a positive constant. The third example is

CðxÞ ¼ 1�
JxJ

a

� �n

þ

, x 2 Rd, ð2Þ

where a is a positive constant, nZ ½d=2�þ1, ½x� denotes the largest integer that is not greater than x, and xþ ¼maxðx,0Þ,
x 2 R; see Askey (1973) and Letac and Rahman (1986). More examples may be found in Wendland (1995), Wu (1995), and
Fasshauer (2007), where compactly supported positive definite functions are employed for fast and efficient interpolation
and approximation. This kind of positive definite functions may be also used for covariance tapering in spatial statistics,
which will be addressed more specifically in the following.

Statistical inference for a univariate random field model often faces a numerical or computational challenge, involving
operations on a large covariance matrix for massive spatial or spatio-temporal data. For instance, the inverse of the
covariance matrix is needed when the maximum likelihood estimation method is employed to estimate covariance
parameters in a Gaussian or elliptically contoured random field model; however, calculating the likelihood can be
computationally infeasible for large datasets, requiring Oðn3Þ operations. Additionally, the best linear unbiased predictor,
often called a kriging predictor in geostatistics, requires the solution of a large linear system based on the covariance
matrix of the observations, which gives rise to the computational hurdle when the sample size is extremely large.
Covariance tapering is a useful technique to mitigate these numerical burdens; see, for instance, Kaufman et al. (2008),
Zhang and Du (2008), Du et al. (2009), and Wang and Loh (2011). More specifically, the true stationary covariance function
CðxÞ is replaced with a tapered one, CtapðxÞ ¼ CðxÞCrðxÞ, the direct product of the true covariance function CðxÞ and a
tapering function CrðxÞ that is a compactly supported correlation function taking zero beyond a certain range described by r.
Therefore the resulting covariance function CtapðxÞ is zero outside the range r and can be executed efficiently by using
well-established algorithms for sparse systems. Of course, this has to be done without sacrificing the richness of the modelling
of the underlying covariance structure. To this end, Kaufman et al. (2008) established the strong consistency of the tapered
likelihood estimator, Du et al. (2009) and Wang and Loh (2011) showed that appropriate tapering maintains asymptotic
efficiency under a fixed-domain (infill) asymptotic framework. Obviously, the covariance matrix inverse problem becomes
much more challenging when one deals with the likelihood inference, the Bayesian inference, or co-kriging for a vector
Gaussian or elliptically contoured random field model. To apply the covariance tapering procedure to multivariate data, the first
task is to come up with valid tapering matrix functions. However, ‘‘It seems that there exist few results on multivariate
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