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In this paper, we propose amultivariate t regressionmodel with its mean and scale covariance
modeled jointly for the analysis of longitudinal data. A modified Cholesky decomposition is
adopted to factorize the dependence structure in terms of unconstrained autoregressive and
scale innovation parameters. We present three distinct representations of the log-likelihood
function of the model and study the associated properties. A computationally efficient Fisher
scoring algorithm is developed for carrying outmaximum likelihood estimation. The technique
for the prediction of future responses in this context is also investigated. The implementation
of the proposed methodology is illustrated through two real-life examples and extensive sim-
ulation studies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the method of joint modeling of mean and covariance on the general linear model with multivariate normal
errors, called the normal joint modeling model (NJMM) hereafter, was heuristically introduced by Pourahmadi (1999, 2000).
The key advantages of such normal-error models include the convenience in statistical interpretation and computational ease in
parameter estimation. Yet it still exists several weaknesses. For instance, the assumption of normality for the error terms may
be questionable in many practical situations when atypical points exist or the underlying data exhibit thick tails. A number of
authors in the literaturehaveused amore thick-taileddistribution, like themultivariate t distribution, in place of normal for robust
estimation of general linear models (Zellner, 1976; Lange et al., 1989; He et al., 2004). Robust estimation for linear mixed models
using the multivariate t distribution has been studied by Welsh and Richardson (1997) and Pinheiro et al. (2001), among others.

Specifically, a p-dimensional random vector Y is said to follow a multivariate t distribution with degrees of freedom (df) �,
mean vector � and scale covariance matrix R if its probability density function is
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We shall use the notation Y ∼ Tp(�,R, �) to denote that Y follows the above distribution. The multivariate t distribution has
attracted considerable attention over the past 20–30 years. It has been applied in a wide variety of research fields, see Kotz and
Nadarajah (2004) and the references therein.
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In this paper, we extend Pourahmadi's approach of joint mean–covariance parameterization to general linear models with
the error term distributed according to a multivariate t distribution, also called the t joint modeling model (TJMM), as a robust
approach to the analysis of longitudinal data.

Suppose that the repeated measurements of a continuous random variable are observed over time on each of m subjects. Let
Yi = (Yi1, . . . ,Yini )

T be the response vector for the ith subject measured at time points ti = (ti1, . . . , tini )
T, which are allowed unevenly

spaced, and let the associate covariates Xi = [xi1 . . . xip] be an ni × p full rank design matrix.
The TJMM is defined as

Yi ∼ Tni (�i,Ri, �) (i = 1, . . . ,m), (1)

where �i = (�i1, . . . ,�ini )
T = Xib is the mean response vector for subject i. Moreover, to ensure positive definiteness of Ri = [�ij],

we reparameterize it via the modified Cholesky decomposition as

LiRiL
T
i = Di, (2)

whereDi=diag{�2
1, . . . ,�

2
ni } andLi=[�jk] is a unit lower triangularmatrixwith the (j, k)th entrybeing−�jk. Obviously,R

−1
i =LTi D

−1
i Li.

The parameters �jk and �2
j in Li and Di are referred to as the autoregressive parameters and scale innovation variances of Ri,

respectively. Note that such decomposition in (2) is unique and has several nice features. For a detailed discussion on the
modified Cholesky decomposition, interested readers are referred to Pourahmadi (2001, Section 3.5).

Statistical interpretations for such reparameterization include (a) the below-diagonal entries of Li are the negatives of the
autoregressive parameters, namely −�jk, in

Ŷij = �ij +
j−1∑
k=1

�jk(Yik − �ik),

which is the linear least-squares predictor of Yij based on its predecessors; (b) the diagonal entries of Di are the scale innovation
variances �2

j = c−1
� var(Yij − Ŷij), where c� = �/(� − 2).

To make the dimension of unconstrained parameters �jk and log�2
j more parsimonious, we model them using covariates in

the spirit of Pourahmadi (1999), namely, for j = 1, . . . ,ni and k = 1, . . . , j − 1,

�jk = zTjkc, log�2
j = wT

j k, (3)

where zjk andwj are d× 1 and q× 1 covariate vectors, which can usually be determined in terms of polynomial of measurement
time tij's with degrees of d − 1 and q − 1, respectively, and c and k are d × 1 and q × 1 vectors of unknown parameters. Note that
c and k are assumed to be common for all Ri's for exhibiting the same covariance structure. In other words, Ri depends on i only
through its dimension ni × ni.

The rest of the paper is organized as follows. In the next section, we present three distinct representations of the log-
likelihood function of TJMM and describe a Fisher scoring algorithm for the implementation of ML estimation. Section 3 is
devoted to addressing the prediction issue. For illustration purposes, two real examples are presented in Section 4 and extensive
simulation results are reported in Section 5. Finally, some concluding remarks are briefly summarized in Section 6, and the
technical derivations are sketched in Appendices.

2. Computational aspects of parameter estimation

2.1. The log-likelihood function

For notational convenience, let ri =Yi −Xib={rij}nij=1, �i(b, c,k)= rTi R
−1
i ri and n=∑m

i=1 ni be the total number of observations.
Denote by a = (b, c,k, �) the population model parameters vector, where b = (	1, . . . ,	p), c = (
1, . . . , 
d), k = (�1, . . . ,�q). Given
independent observations Y= (Y1, . . . ,Ym), the log-likelihood function of a corresponding to TJMM can bewritten in three distinct
representations as follows:
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