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number of explanatory variables is considered. Diagnostic methods based on divergence mea-
sures such as a new measure to detect leverage points and two indicators to detect influential
points are introduced. As an illustration, the diagnostics are applied to human psychology data.
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1. Introduction

The test procedures in the linear regression model are based on the normal distribution of the error variable and thus on
a normal distribution of the endogenous variable Y. However, in many fields of application this assumption may not be true.
Nelder and Wedderburn (1972) proposed a general approach to fit linear models when the random error (and hence the response
Y) belongs to a general very flexible class of distributions—the exponential family. These generalized models consist of three
components:

1. The random component, which specifies the probability distribution of the response variable, Y. Let i = 1, ...,I be an index
running over all distinct combinations of the explanatory variables, such that x; = (x;g, ...,X;j) iS a typical combination of
observed explanatory variables. In our case, we shall assume that for each value of the explanatory variable x; = (xjg, ..., Xix)
we have a binomial random variable Y; = Zj’.’;l Z; (the random variables Zq, ..., Zy, are a random sample from a binary random
variable Z that takes either the value 1 or the value 0, generally referred to as “success” or “failure”, respectively) with
parameters n; and 7; = P(Z = 1/x;). The value y;; will represent the number of “successes”.

2. The systematic component, which specifies a linear function of the explanatory variables. This relates a vector # = (14, ..., 11,)T
such that

n=Xp.

n is called the linear predictor, X is the I x (k + 1) matrix with rows x;,i=1,...,Iand = (f, ....ﬁk)T isa(k+ 1) x 1 vector of
unknown parameters. We shall also assume that rank(X) =k + 1.
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3. The link function g, which describes a functional relationship between 7; and the k + 1 explanatory variables x; = (x;, ..., Xjx)
through the linear predictor

k
}]iEg(TE,')ZZXUﬁj, i=1,...,1,
j=0

where g is a monotonic and differentiable function. We shall assume xjp =1,i=1,...,I.

In this paper, we turn our attention to select and check a binomial response generalized linear model (GLM). There are two
competing goals: the model should be complex enough to fit the data well, and, on the other hand, it should be simple to
interpret, smoothing rather than overfitting the data. In Section 2, we discuss a backward strategy for model selection based
on ¢-divergence test statistics. These test statistics use the minimum ¢-divergence estimator, a natural generalization of the
maximum likelihood estimator (MLE) for the GLM, which is given by
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with y11, ...,y1 the observed values of the binomial random variables Y, ..., Y}, yi» =n; — yi1, N = ij=1 Z§=1 yij and n(xiT,B) =T
The ¢-divergence is defined by
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where @ is the class of all convex functions such that ¢(1) = ¢'(1) = 0,¢"(1) > 0, 0¢(3) = 0 and 0¢(p/0) = p limy_, oc P(u)/u. For
more details about ¢-divergence see Vajda (1989) and Pardo (2006).

Pardo and Pardo (2008a) established that, under the assumption that ¢(t) is twice differentiable at ¢ > 0, the asymptotic
distribution of the minimum ¢-divergence estimator for GLM, B, is normal with mean zero and covariance matrix given by
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where
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and ﬁo is the true value of the parameter f. By Diag((a;);1,...;) we are denoting the diagonal matrix with elements (a;);_;,. ; in
the diagonal.

Other well-known model selection criterion based on a divergence measure is the Akaike Information Criterion (AIC) in-
troduced by Akaike (1973). Following the early work of Akaike, Karagrigoriou and Mattheou (2009) propose the Divergence
Information Criterion (DIC) based on Basu et al. (1998) power divergence (Basu et al., 1998).

After choosing a preliminary model, model checking addresses whether systematic lack of fit exists. The regression diagnostics
introduced by Pregibon (1981) for the dichotomous logistic model are extended, in Section 3, to GLM and generalized using the
¢-divergence defined in (1) for model checking. We also develop some new diagnostics. In Section 4 we illustrate the diagnostic
methods introduced with a numerical example.

2. Variable selection

Variable selection methods aim at determining submodels with a moderate number of parameters that still fit the data
adequately. For large models and large data sets, stepwise procedures are an useful additional tool. We describe backward
stepwise selection based on a new statistic. Starting from a maximal model M, i.e., the GLM with all available explanatory
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