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In this article, we introduce three new distribution-free Shewhart-type control charts that
exploit run and Wilcoxon-type rank-sum statistics to detect possible shifts of a monitored
process. Exact formulae for the alarm rate, the run length distribution, and the average run
length (ARL) are all derived. A key advantage of these charts is that, due to their nonpara-
metric nature, the false alarm rate (FAR) and in-control run length distribution is the same
for all continuous process distributions. Tables are provided for the implementation of the
charts for some typical FAR values. Furthermore, a numerical study carried out reveals that the
new charts are quite flexible and efficient in detecting shifts to Lehmann-type out-of-control
situations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Statistical quality control charts were introduced in the early work of Shewhart (1926) and since then several variations of
themhave been proposed formonitoring continuous characteristics. Most of the control charts are distribution-based procedures
in the sense that the process output is assumed to follow a specified probability distribution (usually normal); see, for example,
Albers et al. (2004). However, this assumption is not often fulfilled in practice and therefore the resulting control charts may not
be accurate. Recent literature have been on the development of several nonparametric methods handling efficiently hypothesis-
testing problems in which no specific assumption is made about the distribution of the underlying process; for example, one
may refer to the books by Gibbons and Chakraborti (2003) and Balakrishnan and Ng (2006). Albers and Kallenberg (2008) have
presented a nonparametric approach for the quality control problem when adequate test observations are not observed.

In the field of statistical quality control, several nonparametric control charts, based on distribution-free hypothesis-test
statistics, have been proposed. For example, Bakir (2006) has constructed a Shewhart-type control chart using a signed-rank
statistic, Chakraborti and Eryilmaz (2007) have considered an alternative class of charts based on the same statistic, while Albers
et al. (2006) have used a suitably modified version of a nonparametric control chart; for an overview of distribution-free control
charts for continuous variables, interested readers are referred to Chakraborti et al. (2001).

In the present article, we propose three new distribution-free Shewhart-type control charts; these use specific order statistics
of a reference sample to establish appropriate control limits and then exploit run or rank-based statistics defined through the
test sample observations that lie between the control limits to decide whether the process is in-control or not. More specifically,
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the first control chart uses the maximum run length of the test sample observations in the joint sample, while the second chart
takes into account the number of runs of the test sample observations whose length exceeds a pre-specified value. Finally, the
third chart exploits the sum of ranks of the test sample observations that lie between the control limits.

In Section 3, we provide exact formulas for the in-control distribution of the aforementioned statistics and discuss how the
calculation of the false alarm rate (FAR) of the new control charts can be carried out. In Section 4, out-of-control situations are
investigated and an explicit formula for the alarm rate under the Lehmann-type alternatives is derived. In Section 5, an expression
for the exact run length distribution is derived using a conditioning argument (see Chakraborti, 2000). Finally, in Section 6, we
carry out extensive numerical computations that displays the efficacy of the new charts and their robustness features under the
in-control as well as out-of-control situations.

2. Three new distribution-free control charts

Traditionally, the control limits of a distribution-free control chart are established from a reference sample drawn from a
process which is in-control. Let us then denote by X1,X2, . . . ,Xm a random sample of size m from the in-control (cumulative)
distribution FX(x) = F(x) and assume that two specific order statistics, say Xa:m, Xb:m, are used as control limits, viz.,

LCL = Xa:m, UCL = Xb:m

(1�a<b�m). The parameters a, b are design parameters of the chart and their determination is traditionally achieved through
twodifferent approaches. The first one requires a specific FAR to be achievedwhile the secondmaintains a pre-specified in-control
average run length (ARL) value (ARLin), such as 370 or 500. It is good to note here that the in-control ARL for a distribution-free
control chart is the same for all (in-control) continuous distributions.

Suppose now test samples are drawn independently of each other (and also independently of the reference sample) and that
we are interested in checking whether the process is still in-control or not. In statistical terms, if Y1,Y2, . . . ,Yn denotes the test
sample and FY (x)=G(x) the corresponding cumulative distribution function, our aim is to detect a possible shift in the underlying
distribution from F(x) to G(x), i.e., to test the null hypothesis H0: F(x) = G(x) against the two-sided alternative H1: F(x)�G(x).

The test statistics used in the present article are defined in terms of

(a) runs of the Y-observations that fall within the control limits LCL, UCL,
(b) the ranks of the Y-observations that fall within the control limits LCL, UCL.

The rationale for the proposed procedures may be summarized as follows. Under the null hypothesis H0: F = G (i.e., if both
the reference and test samples come from the same distribution), the number of test sample observations Yj that fall between
successive X-observations should not attain “extreme” values, with extremes being determined based on the proportion n/m.
With this in mind, two plausible test statistics that could be used for deciding whether the process is in-control are as follows:

• the maximum run length of Y-observations that occur between the control limits,
• the number of runs of Y-observations (between the control limits) whose length exceeds a pre-specified level k.

A third choice, different in nature from the above two, is through

• the sum of ranks (from the joint sample of X and Y observations) of the Y-observations that lie between the control limits
(thereby corresponding to the well-knownWilcoxon-type rank-sum statistic).

All the aforementioned statisticsmay be expressed through the so-called “exceedance statistics” whose distributional proper-
ties have been discussed by a number of authors including Fligner andWolfe (1976) and Randles andWolfe (1979); an elaborate
discussionhas beenprovided in themonographbyBalakrishnan andNg (2006).More specifically, let us denote byMi, i=1, 2, . . . ,m,
the number of test sample observations Yj that fall between the (i − 1)-th and i-th order statistics of the X-sample (with the
convention that X(0) = −∞). Clearly, Mi provide the lengths of runs of Y-observations between successive X-observations. Then,
the three statistics mentioned above can be expressed in terms ofMi's as follows:

R = max(Ma+1,Ma+2, . . . ,Mb), Nk = |{Mi: a + 1� i�b and Mi�k}|, W =
b∑

i=a+1

Wi,

(k is an additional integer-valued design parameter) whereWi denotes the sum of the ranks of the Y-observations falling between
X(i−1) and X(i). In order to establish a formula for the Wilcoxon-type rank-sum statistic W in terms ofMi, after noting that
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