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a b s t r a c t

Random coefficients may result in heteroscedasticity of observations. For particular

situations, where only one observation is available per individual, we derive optimal

designs based on the geometry of the design locus.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the social sciences and biosciences random effects play a growing role, whenever different individuals are involved in
a study. While in fixed effects models typically only additive errors are taken into account, the situation has to change,
when the coefficients of the regression function may vary randomly across those individuals. Our approach here is
motivated by a validation problem in intelligence testing, when only one observation is made available per individual.
Freund and Holling (2008) analyzed the impact of reasoning and creativity on the grade point average (GPA) for students’
scholastic achievements based on data from the standardization sample of the Berlin Structure of Intelligence Test for
Youth: Assessment of Talent and Giftedness (BIS-HB). Since the effect of both variables on school performance may vary
between different classrooms, a random effects model incorporating the explanatory variables on two levels (level 1:
students and level 2: classrooms) was specified. Thus, the results allow for a more detailed interpretation of the role of
different variables in the context of predicting scholastic achievement.

Such ‘‘sparse’’ observations have also been considered by Patan and Bogacka (2007) in a population pharmacokinetics
setup. In those applications the response is usually non-linear. However, to solve the corresponding design problem it is
advisable to have some knowledge of the influence of random coefficients already in the linear model setup. This is the
motivation of the present investigation.

In the linear setup the random coefficient model with a single observation can be reformulated as a heteroscedastic
fixed effects model with a specific structure of the variance function. If the covariance matrix of the random coefficients is
regular it can be easily verified that the corresponding standardized design locus is included on the surface of an ellipsoid
generated by that covariance matrix. In the case of high variability this ellipsoid may coincide with the smallest
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circumscribing one. Then multiple solutions to the design problem are possible as indicated in the discussion by Silvey
(1972) and Sibson (1972). This phenomenon will be demonstrated by some simple but illustrative examples.

2. Model description

We consider a random coefficient regression model YiðxiÞ ¼ fðxiÞ
>bi. The dependence of the observations Yi on the

experimental settings xi is given by the p-dimensional vector of known regression functions f and the statistically
independent vectors bi of random coefficients, which come from a normal distribution, bi �Npðb,DÞ, with mean vector b

and dispersion matrix D. The design problem is to choose the experimental settings xi from the design region X for
estimating the population location parameters b, while the dispersion matrix D is assumed to be known.

In this note we suppose that all observations Yi are independent, i.e. only one observation is made for each realization bi

of the random coefficients. Moreover, we assume here that an intercept is included in the model (f 1ðxÞ � 1) such that
additive observational errors can be subsumed into the random intercept, which will be done in what follows.

This model can be rewritten as a heteroscedastic linear fixed effects model

YiðxiÞ ¼ fðxiÞ
>bþei, ð1Þ

where the observational errors ei ¼ fðxiÞ
>
ðbi�bÞ �Nð0,s2ðxiÞÞ are independent and their variance function is defined by

s2ðxÞ ¼ fðxÞ>DfðxÞ. Within this heteroscedastic linear model the information equals MðxÞ ¼ fðxÞfðxÞ>=s2ðxÞ for each single
setting x 2 X . Then for a design x the standardized information matrix is defined by MðxÞ ¼

Pm
j ¼ 1 xðxjÞMðxjÞ, where xðxjÞ is

the proportion of observations at setting xj,
Pm

j ¼ 1 xðxjÞ ¼ 1.
Note that the covariance matrix for the weighted least squares estimator b̂, which is the best unbiased estimator for b

and coincides with the maximum likelihood estimator in the present setting, equals the inverse of the information matrix.
To compare different designs we consider the most popular criterion, the D-criterion, with respect to which a design xn

is D-optimal, if it maximizes the determinant of the information matrix. This is equivalent to the minimization of the
volume of a confidence ellipsoid for b. In the setting of approximate designs, for which the proportions xðxÞ are not
necessarily multiples of 1/n, where n denotes the sample size, the D-optimality of a design xn can be established by the
well-known Kiefer–Wolfowitz equivalence theorem (see Fedorov, 1972, for a suitable version): A design xn is D-optimal, if
fðxÞ>Mðxn

Þ
�1fðxÞ=s2ðxÞrp, uniformly in x 2 X . When we substitute s2ðxÞ ¼ fðxÞ>DfðxÞ into this relation and rearrange

terms, D-optimality is achieved, if

dðx; xn
ÞZ0 ð2Þ

for all x 2 X , where dðx; xÞ ¼ fðxÞ>ðpD�MðxÞ�1
ÞfðxÞ is the suitably transformed sensitivity function. Moreover, equality is

attained in (2) for design points, where xn
ðxÞ40.

3. Linear regression on the standard interval

In the situation of linear regression we have observations Yi ¼ bi0þbi1x. The vector of regression functions f is given by
fðxÞ ¼ ð1,xÞ>, and the random coefficient vector is bi ¼ ðbi0,bi1Þ

>. We assume that the setting x may be chosen from the
symmetric standard interval X ¼ ½�1;1�, and we consider the design problem with an underlying general covariance
matrix

D¼
d0 d01

d01 d1

 !
:

Here the variances of the random coefficients are denoted by d0 ¼ Varðbi0Þ and d1 ¼Varðbi1Þ, respectively, while
d01 ¼ Covðbi0,bi1Þ is the covariance of the two random coefficients. The variance function equals s2ðxÞ ¼ d0þ2d01xþd1x2

for each setting x.
For any x1,x2 2 ½�1;1� we introduce the two-point designs xx1 ,x2

on x1 and x2 with equal weights xx1 ,x2
ðx1Þ ¼

xx1 ,x2
ðx2Þ ¼ 1=2 as candidates for the optimal designs. Their corresponding information matrix is given by

Mðxx1 ,x2
Þ ¼

1

2s2ðx1Þs2ðx2Þ

s2ðx1Þþs2ðx2Þ x1s2ðx2Þþx2s2ðx1Þ

x1s2ðx2Þþx2s2ðx1Þ x2
1s2ðx2Þþx2

2s2ðx1Þ

 !
ð3Þ

with determinant detðMðxx1 ,x2
ÞÞ ¼ ðx1�x2Þ

2=ð4s2ðx1Þs2ðx2ÞÞ. Maximizing the determinant of Mðxx1 ,x2
Þ with respect to x1 and

x2 2 ½�1;1� leads to the following solutions.
If d0Zd1, the endpoints xn

1 ¼ 1 and xn

2 ¼�1 are optimal. In this case the information matrix results in

Mðx1,�1Þ ¼
1

ðd0þd1Þ
2
�4d2

01

d0þd1 �2d01

�2d01 d0þd1

 !
: ð4Þ

Since 2D�Mðx1,�1Þ
�1
¼ diagðd0�d1,d1�d0Þ we obtain for the sensitivity dðx; x1,�1Þ ¼ ðd0�d1Þð1�x2Þ, and the inequality (2) is

satisfied, which proves the D-optimality of the design x1,�1.
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