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This paper considers linear and nonlinear regression with a response variable that is

allowed to be ‘‘missing at random’’. The only structural assumptions on the distribution

of the variables are that the errors have mean zero and are independent of the

covariates. The independence assumption is important. It enables us to construct an

estimator for the response density that uses all the observed data, in contrast to the

usual local smoothing techniques, and which therefore permits a faster rate of

convergence. The idea is to write the response density as a convolution integral which

can be estimated by an empirical version, with a weighted residual-based kernel

estimator plugged in for the error density. For an appropriate class of regression

functions, and a suitably chosen bandwidth, this estimator is consistent and converges

with the optimal parametric rate n1=2. Moreover, the estimator is proved to be efficient

(in the sense of Hájek and Le Cam) if an efficient estimator is used for the regression

parameter.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

We study regression models of the form Y ¼ rWðXÞþe, where rW is a linear or nonlinear regression function that depends
smoothly on a finite-dimensional parameter vector W. We assume that the covariate vector X and the error variable e are
independent, and that the errors have mean zero and finite variance. We will not make any further model assumptions on
the distributions of X and e, in other words our model is a semiparametric regression model. Note that this model with an
unknown error distribution is particularly relevant in situations where it is not appropriate to assume that the errors are
from a normal distribution, or from some other specific distribution, which would allow estimation of the regression
function using likelihood techniques.

We are interested in situations where some of the responses Y are missing. More precisely, we will assume that Y is
missing at random (MAR). This means that we always observe X, but only observe Y in those cases where some indicator d
equals one, and the indicator d is conditionally independent of Y given X, i.e. Pðd¼ 19X,YÞ ¼ Pðd¼ 19XÞ ¼ pðXÞ. MAR is a
common assumption and is reasonable in many situations (see Little and Rubin, 2002, Chapter 1). One example would be
the problem of non-responses in survey questions: assume, for example, that additional data about socioeconomic status
are available. It is possible that the response probabilities are different for subjects with different socioeconomic
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backgrounds. It is also possible that subjects from the same status group are equally likely to respond, regardless what the
response would be.

Note that the more intuitive notion of randomness for the missing value mechanism is called missing completely at

random (MCAR). Here the missing value mechanism does not depend on observed or unobserved measurements, i.e.
Pðd¼ 19X,YÞ is a constant, Pðd¼ 19X,YÞ ¼ pðXÞ ¼ p. (By assuming MAR responses we will also cover the MCAR situation,
since pðXÞ ¼ p is simply a special case.) The situation when data are not missing at random (NMAR) will not be studied here:
in this case Pðd¼ 19X,YÞ ¼ pðX,YÞ is a function of X and Y. It therefore depends on data that are missing, which means that
inference requires auxiliary information. With the MAR assumption, Pðd¼ 19X,YÞ ¼ pðXÞ depends only on observable data,
i.e. the mechanism pðXÞ is ‘‘ignorable’’: it need not be modeled since it can be estimated from the data.

In this paper we study density estimators, specifically consistent estimators of the density of the response variable Y

which converge with the unusual (fast) rate n1=2. The simplest (slowly converging) estimator of the density of a variable Y

at some point y is a kernel estimator based on observed responses

1

N

Xn

i ¼ 1

dikbðy�YiÞ, ð1:1Þ

where N is the number of completely observed data points, N¼
Pn

j ¼ 1 dj, and where kbðyÞ ¼ kðy=bÞ=b with kernel function k

and bandwidth b40. If there is additional information available in the form of a single covariate or a covariate vector X,
then it is intuitively clear that an estimator which uses the additional information should be better than the kernel
estimator above. This idea is, for example, used by Wang (2008) for a related regression model with MAR responses, but
without assuming independence of covariates and errors. He introduces a probability weighted estimator and an imputed
estimator, and proves local asymptotic normality—but with rates slower than n1=2, which is typical for kernel estimators.
Also related is Mojirsheibani (2007), who studies partial imputation for response density estimators in a nonparametric
regression setting with MAR responses. He also obtains convergence rates that are slower than n1=2.

Here we construct an estimator for the response density from a sample ðXi,diYi,diÞ. Under appropriate conditions on the
regression function and the distribution, our estimator will converge with the desired rate n1=2, and, beyond that, will be
efficient. The case with missing responses is an important generalization of the case with fully observed data, which is
covered as a special case with all indicators di ¼ 1. This is a research area where little work has been done, even if we
include cases where all data are observed.

In order to introduce the estimator we write M for the covariate distribution and f for the error density. We also
suppose that rWðXÞ has a density g. Then the response density, say q(y), can be written as a convolution integral

qðyÞ ¼

Z
f fy�rWðxÞgMðdxÞ ¼

Z
f ðy�uÞgðuÞ du¼

Z
f ðuÞgðy�uÞ du¼ Efgðy�eÞg ¼ fngðyÞ:

This representation suggests two plug-in estimators of the integral: firstly, a convolution of kernel density estimators

q̂ðyÞ ¼ f̂ nĝðyÞ with f̂ ðzÞ ¼
1

N

Xn

j ¼ 1

djkbðz�êjÞ,

ĝðzÞ ¼
1

n

Xn

j ¼ 1

kbfz�rŴ ðXjÞg, ð1:2Þ

where êi ¼ Yi�rŴ ðXiÞ are the residuals based on a n1=2-consistent estimator Ŵ of W. Another obvious and perhaps even
simpler estimator isZ

f̂ fy�rŴ ðxÞg dM̂ðxÞ ¼
1

n

Xn

i ¼ 1

f̂ fy�rŴ ðXiÞg ð1:3Þ

with f̂ from above. Here M̂ is just the empirical covariate distribution function. For technical reasons we will work with
estimator (1.2) in this paper. However, it is easy to see that this estimator can always be written in the form (1.3). The
reverse does not hold in general. The two estimators are the same if, for example, the kernel k in f̂ is the standard normal
density. (See Section 5 for more details.)

Note that the two estimators (1.2) and (1.3) use all observations, whereas the usual kernel estimator (1.1) only uses a
fraction of the data, namely the responses Yi in a neighborhood of y, which explains the faster convergence rate. The
convolution approach is therefore, in general, better than the usual approach (1.1), and even better than the usual
estimator based on complete data pairs. A degenerate case is given if the regression function is a constant, rWðxÞ ¼ W. In this
case we do not estimate an integral: q(y) is just a shift of the error density, qðyÞ ¼

R
f ðy�WÞMðdxÞ ¼ f ðy�WÞ—which is

estimated with the usual slow rates.
Now suppose that the response density can be written as a non-degenerate convolution integral. The estimator (1.2)

will, in general, be n1=2-consistent but not efficient. In order to make it efficient we have to use an efficient estimator for Ŵ.
We will also have to incorporate the mean zero constraint on the error distribution, which we achieve by adding Owen’s
empirical likelihood weights. The weighted estimator of the error density, f̂ w, is then a weighted version of f̂ , with weights
ŵj based on residuals êj ¼ Yj�rŴ ðXjÞ such that the weighted residuals are centered around zero,

Pn
j ¼ 1 ŵjdjêj ¼ 0. Our final
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