Journal of Statistical Planning and Inference 142 (2012) 1215-1224

Contents lists available at SciVerse ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

Efficient estimation for incomplete multivariate data

Bent Jergensen®, Hans Chr. Petersen

Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

ARTICLE INFO ABSTRACT

Article history: We review the Fisher scoring and EM algorithms for incomplete multivariate data from
Received 8 August 2011 an estimating function point of view, and examine the corresponding quasi-score
Accepted 30 November 2011 functions under second-moment assumptions. A bias-corrected REML-type estimator
Available online 16 December 2011 for the covariance matrix is derived, and the Fisher, Godambe and empirical sandwich
Keywords: information matrices are compared. We make a numerical investigation of the two
EM algorithm algorithms, and compare with a hybrid algorithm, where Fisher scoring is used for the
Estimating function mean vector and the EM algorithm for the covariance matrix.

Fisher scoring algorithm © 2011 Elsevier B.V. All rights reserved.
Godambe information matrix

Missing data

REML estimation

1. Introduction

Incomplete multivariate data are a major concern in many applied areas such as for example osteology and
paleontology, where the proportion of missing values may be large, and it is clearly important to use incomplete data
methods that are both statistically and computationally efficient, see e.g. Holt and Benfer (2000), Stefan (2004) or Petersen
(2007). We shall hence compare the two main algorithms for incomplete multivariate normal data, namely the EM
algorithm of Dempster et al. (1977), and the Fisher scoring algorithm developed by Trawinski and Bargmann (1964) and
Hartley and Hocking (1971). However, we discuss these algorithms in the more general setting of estimating functions
under second-moment assumptions, drawing inspiration from the generalized estimating equations (GEE) of Liang and
Zeger (1986), and developing suitable matrix representations for the results. The use of estimating functions under
second-moment assumptions is a well-established technique, especially in biostatistics, see for example Diggle et al.
(2002).

A further motivation comes from the need to obtain a bias-corrected estimator for the covariance matrix X, which we
achieve using the REML-type estimation method developed by Jergensen and Knudsen (2004), based on a bias-corrected
estimating function for X. The estimate of X often serves as input to further multivariate analysis procedures, such as
principal components analysis, classification, and clustering, requiring an estimator for X that is as accurate as possible.
This point is particularly delicate for data with arbitrary missing-data patterns, where the effective degrees of freedom
may vary across the different variable pairs in the data. We concentrate on the simple case where the full data are assumed
to be i.i.d. from a multivariate distribution with finite second moments, which helps bring out the main points in the
discussion without the complications of more general sampling schemes.

The study of estimation based on incomplete samples from the multivariate normal distribution has a long history,
dating back to Wilks (1932), Matthai (1951) and Lord (1955), who considered the bivariate and trivariate normal cases.
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Further special cases were considered by Nicholson (1957) and Buck (1960), after which Trawinski and Bargmann (1964)
and Hartley and Hocking (1971) developed the Fisher scoring algorithm in full generality.

A separate development based on techniques for imputing missing values began with Anderson (1957), followed by
authors such as Orchard and Woodbury (1972) and Beale and Little (1975), who developed what is now known as the EM
algorithm for multivariate normal data. When Dempster et al. (1977) introduced the EM algorithm as a simple and
reasonably efficient estimation technique for incomplete data, this algorithm quickly became the standard for incomplete
multivariate normal data, see e.g. Liski (1985), Liski and Nummi (1988), Kleinbaum (1973), Schafer (1997, Chapter 5),
Johnson and Wichern (2007, pp. 251-256), and Little and Rubin (2002, Chapter 11). The popularity of the EM algorithm all
but arrested the further development of the Fisher scoring algorithm in this setting.

The EM algorithm generally requires more iterations for convergence than the Fisher scoring algorithm, although the
latter takes more computing time per iteration. However, the EM algorithm does not easily produce the information
matrix required for the asymptotic variance of the estimators, and the well-known bias of the maximum likelihood
estimator for X is not easily removed in this context. This motivates a review of the two algorithms along with a discussion
of the proper calculation of the Fisher and Godambe information matrices and the derivation of a bias-corrected estimator
for X.

2. Incomplete data

We first establish a suitable notation for missing data, following Hartley and Hocking (1971), in order to facilitate the
theoretical development and practical implementation of the methods.
Consider a k-vector of data Y, partitioned into observed data Y, and missing data Yy,

Y, R
v |= {M}y. @.1)

Here the k x k matrix [R", M']" appearing on the right-hand side of (2.1) is an orthogonal permutation matrix of zeroes
and a single one in each row and each column (R = retain; M = missing). It follows from the orthogonality that the inverse
of the mapping (2.1) is

R’ Y: T T
Y= {M} Y, =R Y, +M Y. 2.2)

This matrix representation of the missing data structure is very useful both theoretically and practically, and we may
think of (2.1) and (2.2) as giving the relation between the rectangular (Y) and ragged (Y,) representation of the data.
The orthogonality relation:

][] =1

M| M

implies the useful relations:
RR" =1, MM™ =1, RM" =0. (2.3)

Similarly, the relation
MIME

M M

implies

R'R+M"™M=1.
Let us introduce the notation

Y ~[uX],

which means that Y follows a (k-variate) distribution with mean vector g and covariance matrix X. We consider
estimation of u and X based on this second-moment assumption. Let u, and u,, denote the mean vectors of Y, and Y,
respectively. Then (2.1) and (2.2) imply

p R
{ﬂ;} = {M]p and u=R"u,+M'pu,,

respectively. Also, (2.1) implies that
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