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a b s t r a c t

ThePareto approach to optimal experimental design simultaneously considersmultiple ob-
jectives by constructing a set of Pareto optimal designs while explicitly considering trade-
offs between opposing criteria. Various algorithms have been proposed to populate Pareto
fronts of designs, and evaluating and comparing these fronts – and by extension the al-
gorithms that produce them – is crucial. In this paper, we first propose a framework for
comparing algorithm-generated Pareto fronts based on a refined hypervolume indicator.
We then theoretically address how the choice of the reference point affects comparisons of
Pareto fronts, and demonstrate that our approach is Pareto compliant. Based on our theo-
retical investigation,weprovide rules for choosing reference pointswhen two-dimensional
Pareto fronts are compared. Because theoretical results for three-dimensional fronts are
difficult to obtain, we propose an empirical rule for the three-dimensional case by making
an analogy to the rules for two dimensions. We also consider the use of our procedure in
evaluating the progress of a front-constructing algorithm, and illustrate our workwith two
examples from the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most experiments are conducted with multiple, competing objectives in mind. Therefore, designing under a single
criterion may be inadequate. For instance, Gilmour and Trinca (2012) show via examples that the traditional D-optimal
designs allow no ability to estimate pure error; on the other hand, the best design for estimating pure error performs very
poorly in terms of the D-criterion. In situations like this, the final choice of an experimental design should reflect appropriate
compromise across the criteria of interest. But choosing a design based upon the simultaneous optimization of multiple
design criteria is often a difficult problem. Without a priori knowledge about the interdependencies between the criteria,
the conventional compound design and constrained design approach (e.g. Cook and Wong, 1994) for solving multiple-
criteria optimal design problems could lead to relatively poor solutions (Coello Coello et al., 2007; Das and Dennis, 1997).
Furthermore, the tradeoff between the objectives cannot be fully understoodwithout simultaneously considering all criteria.

The Pareto front approach (Park, 2009; Lu et al., 2011; Sambo et al., 2014) not only accounts for the varying interest and
importance of the various objectives simultaneously but also provides the most insight about the tradeoffs between the
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alternative choices, which in turn enables better decision making. This procedure involves finding a set of Pareto optimal
designs and then using the experimenter’s evaluation of the existing trade-offs between the designs to ultimately choose
between them. The criterion vectors associatedwith the Pareto optimal set of designs is known as the Pareto front. The shape
of the Pareto front provides useful information about the amount of tradeoff between the different criteria and how much
compromise is needed from some criteria to improve others. Critical to this approach is the assumption that the Pareto front
has been sufficiently populated. The true Pareto front, however, is rarely known and hence any algorithm used to generate
a set of designs (e.g. the exchange algorithms of Lu et al., 2011; Sambo et al., 2014, or the multi-objective evolutionary
algorithm of Park, 2009) merely results in an approximation of the true Pareto front. The quality of this approximation
depends upon (1) the proximity of the points on the approximated front to the points on the true Pareto front; and
(2) the diversity of the points on the approximated front, where more diversity is typically better. These characteristics are
important both in offline settings, in which one compares multiple fronts produced by competing algorithms, and online
settings, inwhich a front is evaluated as it evolveswith the rate of this evolution potentially used as a termination criterion. In
this article, we are concernedwith how Pareto fronts are evaluated and compared, rather thanwith algorithm development.

A popular measure of the quality of an approximated Pareto front is the front’s hypervolume (Zitzler and Thiele, 1998),
which measures the size of the space enclosed by all solutions on the Pareto front and a user-defined reference point (for a
formal definition see Section 2). This measure of Pareto front quality has gained increasing interest in recent years and has
become the standard offline indicator of the performance of multi-objective optimization algorithms (Zitzler et al., 2008). It
has also been used as an online indicator to guide the optimization process (Knowles et al., 2003; Zitzler and Künzli, 2004;
Emmerich et al., 2005; Beume et al., 2007; Bader and Zitzler, 2011). Its success and popularity are due to the fact that it
simultaneously accounts for proximity and diversity and is strictly Pareto compliant. This means that whenever one Pareto
front approximation dominates another, the hypervolume of the former is greater than that of the latter. One significant
drawback to this measure is that its magnitude is dependent upon an arbitrarily chosen reference point. We will return to
this point, in detail, in Sections 3 and 4.

Though the hypervolumemeasure is a well-established indicator of a front’s quality, it has only recently been introduced
to the statistics literature. Lu and Anderson-Cook (2012) develop a hypervolume-like indicatorwithin the context of optimal
experimental design, but there are several issues with their proposed measure: (1) they use different reference points
for different approximate Pareto fronts which leads to unfair comparisons; (2) they choose the reference point in a way
that does not permit a contribution to the hypervolume by all points; (3) Pareto compliance is not maintained because
dominated points are used to compare an approximate front to the reference front; and (4) when used in an online setting,
their proposed procedure can suggest decreases in Pareto front quality even as a front evolves in the context of a front
construction algorithm. These issues are explained in more detail in Sections 2.2 and 4.1.

In this paper we address the aforementioned issues and propose an improved hypervolume-based measure for use
in Pareto optimal design. In Section 2, we review the notion of Pareto optimal design, describe the computation of the
hypervolume indicator, and explain in more detail the problems with the outstanding versions of the measure as well as
our solutions to those problems. We also propose an interpretable scalar metric for describing how well a Pareto front is
approximated and illustrate how the proposed indicator can be used in comparing competing Pareto fronts. In Section 3,
we develop theoretical properties regarding the influence of the reference point on the calculation of the hypervolume
indicator. Guidance is provided for choosing the reference point, in the presence of two criteria, based on our theoretical
investigations, and we suggest a similar approach for the three-dimensional case. In Section 4, we illustrate our proposed
procedure in both an offline and online setting in the context of multi-objective optimal experimental design, consider the
influence of the reference point in a three-dimensional example, and explore the reasons for unintuitive decreases in the
online uses of the hypervolume measure. In Section 5 we provide a recap and discussion.

Thoughwe proceedwith experimental design as the context, we note that our results and conclusions aremore generally
applicable to anymulti-objective optimization setting in which the Pareto approach is employed and similar algorithms are
used.

2. The hypervolume indicator and procedure for comparing discrete Pareto fronts

Without loss of generality, assume that the goal of a general multiple-criteria design optimization problem is to simulta-
neously maximize C ≥ 2 design criteria. Let f(ξ) = (f1(ξ), f2(ξ), . . . , fC (ξ))′ denote the C × 1 vector of criterion values for
design ξ . Let Ξ denote the search space of all feasible designs. A design ξ1 ∈ Ξ is said to dominate ξ2 ∈ Ξ if fj(ξ1) ≥ fj(ξ2)
for all j ∈ {1, . . . , C} and there exists at least one j ∈ {1, . . . , C} for which fj(ξ1) > fj(ξ2). In this case, the criterion vector
f(ξ1) is said to dominate the criterion vector f(ξ2) and we write ξ1 ≻ ξ2. If fj(ξ1) ≥ fj(ξ2) for all 1 ≤ j ≤ C , we say ξ1 weakly
dominates ξ2 and we write ξ1 ≻ ξ2. Henceforth, the criteria vector corresponding to a particular design is referred to as
a point in the criterion space. A design is Pareto optimal if and only if no other design dominates it and its corresponding
criterion vector is a non-dominated vector. The set of Pareto optimal designs constitutes the Pareto optimal set and the cor-
responding criterion vectors are said to be on the Pareto front or frontier. A good overview of the Pareto-related concepts is
available in Coello Coello et al., 2007.

Given the experimental design setting, we treat every Pareto front as finite and discrete. We then assume that a given
point on the Pareto front can be written as the ordered pair (f1(ξ), f2(ξ)) ∈ R2 in two dimensions or the ordered triplet
(f1(ξ), f2(ξ), f3(ξ)) ∈ R3 in three dimensions, where f1(ξ), f2(ξ) and f3(ξ) correspond to design criterion values 1, 2 and
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