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a b s t r a c t

By consideringwithin-subject correlation among repeatedmeasures over time,wepropose
a new and efficient estimation of varying-coefficient models for longitudinal data. Based
on a modified Cholesky decomposition, the within-subject covariance matrix is decom-
posed into a unit triangular matrix involving generalized autoregressive coefficients and
a diagonal matrix involving innovation variances. Local polynomial smoothing method is
used to estimate the unknown varying coefficient functions of marginal mean and inno-
vation variances. A method is also developed to estimate the autoregressive coefficients.
All the resulting estimators are shown to be consistent and asymptotically normal. The
proposed estimator of varying coefficient functions are asymptotically more efficient than
the ones which ignore the within-subject correlation structure. Simulations are conducted
to demonstrate finite sample behaviors of the proposed estimators, and a real example is
given to illustrate the value of the proposed methodology.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In biomedical studies, subjects are oftenmeasured repeatedly over a given time period, so that themeasurements of each
subject are possibly correlatedwith each other but different subjects can be assumed to be independent. Data of this type are
frequently referred to as longitudinal samples. The methodology for parametric longitudinal data analysis is quite mature.
In recent years, there has been substantial interest in developing nonparametric and semiparametric regression methods
for longitudinal data. Of importance are the varying-coefficient models. Since their introduction by Hastie and Tibshirani
(1993), varying coefficient models have become an increasingly popular option for dimension reduction in nonparametric
regression with multiple predictors. Due to their flexibility to explore the dynamic features which may exist in the data
and their easy interpretation, the varying coefficient models have been widely applied in many scientific areas, such as in
economics, psychology, sociology and many other fields of natural and social sciences. The theory and methodology have
also experienced rapid developments; see Fan and Zhang (2008) for a comprehensive reviewof various statistical procedures
proposed for the varying-coefficient models.

The varying-coefficient models are particularly appealing in longitudinal studies where they allow one to explore the
extent to which covariates affect responses changing over time. Wu et al. (1998) used the local polynomial kernel method
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to obtain estimators byminimizing a local least-squares criterion and developed approximated pointwise and simultaneous
confidence regions for the unknown coefficient functions. Lin and Ying (2001) studied a least-squares procedure that leads
to a consistent estimator of the unknown coefficient functions. Huang et al. (2004) proposed a class of global estimation
methods for the varying-coefficient models based on basis approximations. Xue and Zhu (2007) proposed a naive, mean-
corrected and residual-adjusted empirical likelihood ratio test for the unknown coefficient functions. Tang and Cheng (2008)
discussed M-estimation of the unknown coefficient functions by using B-spline series approximation. By linearizing the
gSCAD penalty, Noh and Park (2010) proposed a one-step estimation that has the oracle property in variable selection. Yang
et al. (2014) investigated the empirical likelihood inference of varying-coefficient errors-in-variables models. To name just
a few.

An important feature of longitudinal data is the presence of serial correlation within repeated measurements on a given
subject. Almost all papers mentioned above have not seriously investigated the issue of incorporating the correlation in
estimation. It is well known that misspecification of the correlation may result in a great loss of efficiency. In addition,
the correlation structure itself is of interest. Therefore, it is also essential to model the covariance structure. Since there
are usually much more parameters in the covariance matrix and the positive definiteness of the covariance matrix has
to be assured, modeling the correlation matrix is more challenging than modeling the mean. Pourahmadi (1999, 2000)
proposed amodified Cholesky decomposition to decompose the covariance matrix, which is attractive due to the fact that it
leads automatically to positive definite covariance matrices, and the parameters in it are related to well-founded statistical
concepts. As a result, the regression techniques can be used tomodel the parameters in this decomposition andmodel based
inference for the parameters in themean and the covariances could bemade. See Leng et al. (2010) for a detailed discussion.

For the merits of modified Cholesky decomposition, many researchers have used it to investigate various statistical
models. For example, within the framework of generalized linear models, Ye and Pan (2006) proposed to use generalized
estimating equations (GEE) to model the parameters in the decomposition by several sets of parametric estimating
equations. To relax the parametric assumption, Pan et al. (2009) proposed a nonparametric local kernel weighted likelihood
based approach to model the mean and covariance structures based on modified Cholesky decomposition. Since a
fully nonparametric approach is hampered by some serious drawbacks, such as the curse of dimensionality, difficulty
of interpretation, and lack of extrapolation capability, Leng et al. (2010) proposed a data-driven approach based on
semiparametric regression models for the mean and the covariance simultaneously. More recently, Yao and Li (2013)
developed a new estimation of nonparametric regression functions for clustered or longitudinal data based on Cholesky
decomposition. Unlike Leng et al. (2010) using GEE method, they proposed to use the profile least squares techniques to
estimate the correlation structure and regression function simultaneously. Motivated by these articles, in this paper, we
investigate the statistical inference of varying-coefficient regressionmodels for longitudinal datawhich do not require using
the GEE methods to obtain the estimated variance when the longitudinal data are unbalanced like Yao and Li (2013) and
allowing the regressive coefficients to depend on the time like Leng et al. (2010). Obviously, our approach is more flexible
and appealing than Leng et al. (2010) and Yao and Li (2013) in both the mean and the covariance. It is noteworthy that
many other efforts have been made to model the correlation structure of the longitudinal data, and several methods have
been proposed. They include generalized estimating equationsmethods (Liang and Zeger, 1986), the nonparametricmethod
(e.g. Li, 2011), the semiparametric method (e.g. Fan et al., 2007), the basis matrix method (e.g. Zhou and Qu, 2012), and so
on.

The rest of paper is organized as follows. Section 2 describes the initial local linear estimator of the coefficient functions
which ignores the within-subject correlation. Fitting generalized autoregressive coefficients and innovation variances is
conducted in Section 3. Section 4develops a new two-stage local polynomial estimationprocedure to estimate the coefficient
functions. In Section 5, we present Monte Carlo simulation results. We further illustrate the proposed procedure via
analyzing apanel hormone study in Section6. Section 7 ends the articlewith a discussion. Regularity conditions and technical
proofs are presented in the Appendix.

2. Model setup

For n randomly selected subjects with each subject being repeatedly measured over time, the longitudinal sample of
{Y (t), t, Z(t)} is denoted by {(Yij, tij, Zij); i = 1, . . . , n, j = 1, . . . ,mi}, where tij is the jth measurement time of the ith
subject, Yij = Yi(tij) and Zij = (Z1ij(tij), . . . , Zpij(tij))⊤ are the observed outcome and covariate vector, respectively, of the ith
subject at time tij, and mi is the ith subject number of repeated measurements. Here ⊤ denotes the transpose of a vector or
matrix. The total number of measurements for the study is N =

n
i=1 mi. We also assume in our asymptotic study thatmi is

bounded, but the number of subjects n goes to infinity. In contrast to the independent identically distributed (i.i.d.) sample,
the measurement within each subject is possibly correlated, although the inter-subject measurements are assumed to be
independent. Moreover, without loss of generality, we further assume that all tij are scaled into the interval T = [a, b].

A varying-coefficient model for such longitudinal sample has the form

Yij = Z⊤

ij α(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . ,mi, (2.1)

whereα(t) = (α1(t), . . . , αp(t))⊤ is a vector of smoothing functions of t , and {εi(t), i = 1, . . . , n} are zero-mean stochastic
processes independent of Zij.
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