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a b s t r a c t

Assume that X = (X1, . . . , Xd), d > 2 is a random vector having joint cumulative
distribution function H with continuous marginal cumulative distribution functions
F1, . . . , Fd respectively. Sklar’s decomposition yields a unique copula C such that
H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all (x1, . . . , xd) ∈ Rd. Here F1, . . . , Fd and C
are the unknown parameters, the one of interest being the copula C . We assume C to
belong to the Archimedean family, that is C = Cψ , for some Archimedean generator ψ .
We exploit the well known fact that such a generator is in one-to-one correspondence
with the distribution function of a nonnegative random variable R with no atom at zero.
In order to adopt a Bayesian approach for inference, a prior on the Archimedean family
may be selected via a prior on the cumulative distribution function F of R. A mixture
of Pólya trees is proposed for F , making the model very flexible, yet still manageable.
The induced prior is concentrated on the space of absolutely continuous d-dimensional
Archimedean copulas and explicit forms for the generator and its derivatives are available.
To the best of our knowledge, others in the literature have not yet considered such an
approach. An extensive simulation study is carried out to compare our estimator with a
popular frequentist nonparametric estimator. The results clearly indicate that if intensive
computing is available, our estimator is worth considering, especially for small samples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

LetH be the space of multivariate cumulative distribution functions with continuousmargins. Consider a random vector
X = (X1, . . . , Xd) with joint cumulative distribution function (cdf) H ∈ H , and let F1, . . . , Fd be the (continuous) marginal
cdfs of X1, . . . , Xd respectively. Now let U1 = F1(X1), . . . ,Ud = Fd(Xd), and consider the copula C given by

C(u1, . . . , ud) = P(U1 6 u1, . . . ,Ud 6 ud), (u1, . . . , ud) ∈ [0, 1]d.

In this case, Sklar’s Theorem says that C is the unique copula for which H admits the representation H(x1, . . . , xd) =

C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. The copula C holds the properties of the joint cdf H which are invariant with
respect to strictly increasing transformations of the margins X1, . . . , Xd. A d-dimensional Archimedean copula has the form

Cψ (u1, . . . , ud) = ψ(ψ−1(u1)+ · · · + ψ−1(ud)), u1, . . . , ud ∈ [0, 1], (1.1)
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whereψ is called an Archimedean generator, that is, a continuous nonincreasing function defined on [0,∞), withψ(0) = 1,
ψ(∞) = 0, and ψ−1(0) = inf{x : ψ(x) = 0}, where inf∅ = +∞. In particular, ψ is decreasing on [0, ψ−1(0)).

A characterization of Archimedean generators that yield d-dimensional copulas for some fixed dimension d > 2 was
recently established byMcNeil andNešlehová (2009). In particular, the characterization openned the door to new inferential
techniques for Archimedean copulas, and that, in the multivariate case. This has been the topic of the paper by Genest et al.
(2011), where a rank-based approach is developed in a frequentist setting. This approach is well justified only in the cases
d = 2 and d = 3. In short, their methodology is valid if an Archimedean copula Cψ is in one-to-one correspondence with its
Kendall distribution

K(w) = P(W 6 w), w ∈ [0, 1], (1.2)

with W = Cψ (U1, . . . ,Ud) and (U1, . . . ,Ud) distributed according to Cψ . The estimator for Cψ is constructed via the
empirical estimator for K , but for this to make sense, there must be only one Cψ associated to K . This can be shown to hold
in dimensions d = 2 and 3, but it nevertheless remains a conjecture for d > 3. As discussed in Embrechts and Hofert (2011),
Janssen andDuchateau (2011), Segers (2011), Tsukahara (2011) andWang andEmura (2011), this problem is challenging and
although there is strong evidence in its favor, according to Segers (2011), nothing should be taken for granted. In the bivariate
case (d = 2), nonparametric Bayesian methodology based on this result appears in Lambert (2007), using a polynomial
splines model for the Kendall distribution K . The latter approach is interesting, but seems a bit complicated and works only
in dimension d = 2.

One objective here is to propose Bayesian nonparametric inference which does not rely on the above identifiability
result, and valid in any dimension d > 2. The Bayesian approach requires a likelihood function and so we want a prior
that is concentrated on Archimedean copulas with densities (with respect to d-dimensional Lebesgue measure). Note here
in passing that the Genest et al. (2011) estimator does not have a density due to the fact that it is constructed from the
empirical cdf of K . To compute the likelihood, we shall need to evaluate high-order derivatives of ψ . As pointed out by
Genest et al. (2011), by Embrechts and Hofert (2011), and by Hering and Stadtmüller (2012), this is not immediate mainly
because of the complexity of the resulting algebraic expressions, numerical accuracy losses or computational speed. Our
main goal is to construct a flexible prior on the generator ψ for which both its representation and its derivatives can be
made explicit (in closed form). This will make the methodology conceptually simple, easy to implement, and fast to run on
a computer. Ultimately, the approach should also give a low mean integrated squared error.

In Section 2, we select a prior on the generatorψ by exploiting the result that the latter is in one-to-one correspondence
with the distribution function of a nonnegative random variable Rwith no atom at zero, seeMcNeil and Nešlehová (2009). In
fact, if S is a random vector uniformly distributed over the standard simplex, and independent of R, then Cψ corresponds to
the survival copula of the random vector Y = RS. The prior onψ is therefore obtained by selecting a prior on the distribution
of R. To do so,we proceed as inHanson and Johnson (2002), BranscumandHanson (2008) and Zhao et al. (2009), and consider
a mixture of finite Pólya trees, see also Hanson (2006) and Christensen et al. (2008). Essentially, the base (or centering)
distribution of the Pólya tree is assumed to belong to a parametric family, instead of being fixed, and amixing distribution is
selected. This has the advantage of removing the influence of a single centering distribution on the inference. In particular, it
smooths out the effect of the partition induced by the centering distribution. The particular choice of the parametric family
together with themixing distribution play an important role in that respect. They are also critical for the evaluation ofψ and
its derivatives. Next, in Section 3, we describe how to obtain a numerical approximation of the Bayes estimator and discuss
a way to make predictions (this being a true practical advantage over a frequentist approach for such problems). Finally,
the results of an extensive simulation study is carried out where comparisons are made with the nonparametric estimator
proposed by Genest et al. (2011). Using essentially the same simulation setup as theirs, our estimator outperformed their
estimator in every case (81 different situations in total), and the difference is quite remarkable especially for small sample
sizes.

2. The model

As in Genest et al. (2011), our model is based on the following. Consider a d-dimensional, d > 2, Archimedean copula
of the form (1.1). A characterization of Archimedean generators that yield d-dimensional copulas for some fixed dimension
d > 2 is provided via the so-called Williamson d-transform. The Williamson d-transform of a nonnegative random variable
Rwith cumulative distribution function F is given by

WdF(x) = E
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F(dr), for all x > 0, (2.1)

and the correspondence between F and WdF is one to one. It turns out that an Archimedean generator ψ yields a d-
dimensional copula Cψ via (1.1) if and only if there exists a random variable R with cumulative distribution function F ,
such that F(0) = 0 and ψ = WdF . Let Ψd denote the space of such Archimedean generators. Here F is called the radial
cumulative distribution function associated with ψ . Important to us is the equivalence between absolute continituity of F ,
absolute continuity ofψ (d−1) on (0,∞), and a density for the copula Cψ . When the latter copula has a density, its expression
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