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involving the number of small balls that are needed to cover larger ones. We also require
that the prior put enough probability on small balls.

We consider two different situations. The simplest case is the one of a parametric
model containing the target density for which we show that the posterior concentrates
around the true distribution at rate 1/./n. In the general situation, we relax the parametric
assumption and take into account a possible misspecification of the model. Provided that
the Kullback-Leibler Information between the true distribution and the model .7 is finite,
we establish risk bounds for the Bayes estimators.
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1. Introduction

The purpose of this paper is to derive in a simple way some non-asymptotic results about posterior distributions and
Bayes estimators from a frequentist viewpoint, therefore offering a complementary point of view to the classical results by
Ghosal et al. (2000) — see also the related papers: Ghosal et al. (2003) and van der Vaart (2003). It can also be considered as
anew and extended presentation of Le Cam (1973, 1982). In any case, it has been strongly influenced by these three papers.

We shall work here within the following framework: we have at disposal asample X = (X1, ..., X;) of size n, the X; being
measurable mappings from (£2, 4) to (£, X)) with a common unknown distribution P. This distribution is an element of
the metric space (2, h) of all probability measures on (2", X) endowed with the Hellinger distance h given by

h?(R T)—lf \/@ ,/d—T zdk
T dr  Vdxr ’

where A is an arbitrary positive measure which dominates both R and T. We then introduce a model for P, i.e. a dominated
family.” = {P; | t € S} C £ of probabilities on 2" with densities f; = dP; /du with respect to some reference measure p on
2 . We assume that the mapping t — P; is one-to-one which allows us to systematically identify S and .7, thus considering
S as a metric space with distance h — h(t, u) = h(P;, P,) — and the corresponding Borel o -algebra. We then introduce a prior
distribution v on S, turning the parameter t into a random variable t. The prior v and the sample X give rise to a posterior
distribution v = v(-|X) and, given a loss function w o hon S x S, to a corresponding Bayes estimator’s defined by

S(:|1X) = argminE [w (h(u, t)) |X] = /w (h(u, t)) dv(t|X), (1.1)
ues S
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where argmin refers to any minimizer in case it is not unique. In the sequel we shall write E[f (X)] to indicate that the X;
are i.i.d. with distribution P; and P; for the corresponding probability on 2 that gives X the distribution P®".

Our purpose here will be twofold. When P = P; truly belongs to .~ and the metric structure of (., h) is similar to that
of a compact subset of some Euclidean space, we shall study the concentration rate of the posterior distribution v(-|X) of t
around P;. When P does not belong to . or the metric structure of .# does not follow the previous requirements, we shall
study the performance of the Bayes estimator(s) P; of P defined via the loss function w o h for suitable functions w. The main
feature of our approach is its non-asymptotic viewpoint, explicit deviation bounds being provided for fixed n.

Some notations. To begin with, let us fix some notations to be used throughout the paper. In the metric space (S, h),
we denote by B(t, r) the closed Hellinger ball with center t € S and radius r while the ball with center y and radius r in
the Euclidean space RY will be denoted B4 (y, r). The set of positive integers N \ {0} is denoted by N*, the cardinality of the
set N by |[N| and we write a Vv b for max{a, b}. The distance between two sets A and B is h(A, B) = inf;c4 yep h(t, u) and if
X = (x1,...,X,) € 2" we write f; (x) instead of ]_[?:]ft(xi).

For any measurable subset B of S such that v(B) > 0, we define the density gz with respect to £®" and the probability Pz
on 2" by

g(x) = /ﬁ(x)dv(t) and Pg=gp- pu®". (1.2)
B

1
v(B)
We denote by Pg the probability on £2 that gives X the distribution Pg.

2. A toy example

Let us first consider, in order to motivate our approach, the very particular situation of a finite or countable parameter
set S containing the true density s to estimate. Besides, we shall assume that v(t) > Oforall t € S. The posterior probability
is given in this case by

S v(Ofi(X) S vOfX)\ ! > v(O)fi(X)
T(BIX) = teB — 1 teB¢ _ teB¢
Y= or U T Svorm ] T Svorm
tesS teB teB

for all B C S and it follows that
> v(Ofi(X)

teB
v($)fs(X)

In order to evaluate the concentration of the posterior distribution v(.|X) around s, we focus on those sets B, which are
Hellinger balls centered at s with radius k//n, k € N*. Bounding v(B,|X) from below requires to bound from above ratios
of the form f; (X) /f;(X) when the X; are distributed according to P;, which implies that f;(X) > 0 a.s. This control derives
from Lemma 7 in Birgé (2006) which implies the following inequality:

V(BIX)>1— forallB 5 s. (2.1)

Lemma 1. Given n ii.d. random variables X . .. X, with distribution P and another distribution Q, then log ((dQ /dP)(X;)) €
[—o0, 400) a.s. (with the convention log0 = —oo) and, forally € R,

- a . A ; _ [ /dpdQ
P[;log(m)(xo) zy} = exp[—3] 0" (. Q) with p(P. Q)—/,/dk = d.

We recall here that p(P, Q) is called the Hellinger affinity between P and Q, the definition being independent of the choice
of the dominating measure A, and that it satisfies

p(P,Q)=1—1(P,Q) and p (P®",Q®") =p"(P,Q) < exp[—nh*(P,Q)], (2.2)
hence

W (PP, Q") =1-p"(P,Q) = 1- (1-F*(P, Q)" < nk*(P, Q). (23)
We therefore derive from Lemma 1 and (2.2) that, for § > 0,

P [fi(X) > 8v()fi(X)] < [8v(s)]"/?p" (P, P) < [8v(s)]”"/* exp [—nh*(Ps, P)] .
Setting, for k € N*,

Fk:{x

supfe(x) = Sv(s)fs(®)
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