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a b s t r a c t

This paper investigates the nonasymptotic properties of Bayes procedures for estimating an
unknown distribution from n i.i.d. observations. We assume that the prior is supported by
a model (S , h) (where h denotes the Hellinger distance) with suitable metric properties
involving the number of small balls that are needed to cover larger ones. We also require
that the prior put enough probability on small balls.

We consider two different situations. The simplest case is the one of a parametric
model containing the target density for which we show that the posterior concentrates
around the true distribution at rate 1/

√
n. In the general situation, we relax the parametric

assumption and take into account a possible misspecification of the model. Provided that
the Kullback–Leibler Information between the true distribution and the model S is finite,
we establish risk bounds for the Bayes estimators.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to derive in a simple way some non-asymptotic results about posterior distributions and
Bayes estimators from a frequentist viewpoint, therefore offering a complementary point of view to the classical results by
Ghosal et al. (2000) — see also the related papers: Ghosal et al. (2003) and van der Vaart (2003). It can also be considered as
a new and extended presentation of Le Cam (1973, 1982). In any case, it has been strongly influenced by these three papers.

We shall work herewithin the following framework:we have at disposal a sampleX = (X1, . . . , Xn) of size n, the Xi being
measurable mappings from (Ω,A) to (X ,X) with a common unknown distribution P . This distribution is an element of
the metric space (P, h) of all probability measures on (X ,X) endowed with the Hellinger distance h given by

h2(R, T ) =
1
2

 
dR
dλ

−


dT
dλ

2

dλ,

where λ is an arbitrary positive measure which dominates both R and T . We then introduce a model for P , i.e. a dominated
familyS = {Pt | t ∈ S} ⊂ P of probabilities onX with densities ft = dPt/dµwith respect to some referencemeasureµ on
X . We assume that the mapping t → Pt is one-to-one which allows us to systematically identify S and S , thus considering
S as ametric spacewith distance h— h(t, u) = h(Pt , Pu)—and the corresponding Borel σ -algebra.We then introduce a prior
distribution ν on S, turning the parameter t into a random variable t . The prior ν and the sample X give rise to a posterior
distribution ν = ν(·|X) and, given a loss functionw ◦ h on S × S, to a corresponding Bayes estimators defined by

s(·|X) = argmin
u∈S

E [w (h(u, t)) |X ] =


S
w (h(u, t)) dν(t|X), (1.1)
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where argmin refers to any minimizer in case it is not unique. In the sequel we shall write Es[f (X)] to indicate that the Xi
are i.i.d. with distribution Ps and Ps for the corresponding probability onΩ that gives X the distribution P⊗n

s .
Our purpose here will be twofold. When P = Ps truly belongs to S and the metric structure of (S , h) is similar to that

of a compact subset of some Euclidean space, we shall study the concentration rate of the posterior distribution ν(·|X) of t
around Ps. When P does not belong to S or the metric structure of S does not follow the previous requirements, we shall
study the performance of the Bayes estimator(s) Ps of P defined via the loss functionw ◦h for suitable functionsw. Themain
feature of our approach is its non-asymptotic viewpoint, explicit deviation bounds being provided for fixed n.

Some notations. To begin with, let us fix some notations to be used throughout the paper. In the metric space (S, h),
we denote by B(t, r) the closed Hellinger ball with center t ∈ S and radius r while the ball with center y and radius r in
the Euclidean space Rd will be denoted Bd(y, r). The set of positive integers N \ {0} is denoted by N∗, the cardinality of the
set N by |N| and we write a ∨ b for max{a, b}. The distance between two sets A and B is h(A, B) = inft∈A, u∈B h(t, u) and if
x = (x1, . . . , xn) ∈ X n we write ft(x) instead of

n
i=1 ft(xi).

For any measurable subset B of S such that ν(B) > 0, we define the density gB with respect toµ⊗n and the probability PB
on X n by

gB(x) =
1
ν(B)


B
ft(x) dν(t) and PB = gB · µ⊗n. (1.2)

We denote by PB the probability onΩ that gives X the distribution PB.

2. A toy example

Let us first consider, in order to motivate our approach, the very particular situation of a finite or countable parameter
set S containing the true density s to estimate. Besides, we shall assume that ν(t) > 0 for all t ∈ S. The posterior probability
is given in this case by

ν(B|X) =


t∈B
ν(t)ft(X)

t∈S
ν(t)ft(X)

=

1 +


t∈Bc

ν(t)ft(X)
t∈B
ν(t)ft(X)

−1

≥ 1 −


t∈Bc

ν(t)ft(X)
t∈B
ν(t)ft(X)

for all B ⊂ S and it follows that

ν(B|X) ≥ 1 −


t∈Bc

ν(t)ft(X)

ν(s)fs(X)
for all B ∋ s. (2.1)

In order to evaluate the concentration of the posterior distribution ν(.|X) around s, we focus on those sets Bk which are
Hellinger balls centered at s with radius k/

√
n, k ∈ N∗. Bounding ν(Bk|X) from below requires to bound from above ratios

of the form ft(X)/fs(X) when the Xi are distributed according to Ps, which implies that fs(X) > 0 a.s. This control derives
from Lemma 7 in Birgé (2006) which implies the following inequality:

Lemma 1. Given n i.i.d. random variables X1 . . . Xn with distribution P and another distribution Q , then log ((dQ/dP)(Xi)) ∈

[−∞,+∞) a.s. (with the convention log 0 = −∞) and, for all y ∈ R,

P


n

i=1

log

dQ
dP
(Xi)


≥ y


≤ exp


−

y
2


ρn(P,Q ) with ρ(P,Q ) =

 
dP
dλ

dQ
dλ

dλ.

We recall here that ρ(P,Q ) is called the Hellinger affinity between P and Q , the definition being independent of the choice
of the dominating measure λ, and that it satisfies

ρ(P,Q ) = 1 − h2(P,Q ) and ρ

P⊗n,Q⊗n

= ρn(P,Q ) ≤ exp

−nh2(P,Q )


, (2.2)

hence

h2 P⊗n,Q⊗n
= 1 − ρn(P,Q ) = 1 −


1 − h2(P,Q )

n
≤ nh2(P,Q ). (2.3)

We therefore derive from Lemma 1 and (2.2) that, for δ > 0,

Ps [ft(X) ≥ δν(s)fs(X)] ≤ [δν(s)]−1/2ρn(Ps, Pt) ≤ [δν(s)]−1/2 exp

−nh2(Ps, Pt)


.

Setting, for k ∈ N∗,

Γk =


x

 supt∈Bck

ft(x) ≥ δν(s)fs(x)


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