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a b s t r a c t

Weconsider the nonparametric regression problem,wherewe take fixed design points xi ∈

[0, 1]. We apply Bayesianmethods, taking scaled Brownianmotion as a prior. The posterior
mean is used as an estimator for the function of interest f at a given point. Bayesian
credible sets are constructed using the posterior distribution, which are then studied using
frequentist methods. Results on the coverage of such credible sets are obtained, which are
seen to depend on the Hölder smoothness of the regression function f and the choice of
scaling. An optimal scaling is derived for a given smoothness.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and main result

We consider estimating the regression function f in the fixed design regression problem, where we have data
Yi = f (xi) + Zi, i ∈ {1, . . . , n}. (1.1)

Here (xi) is a known sequence of points in the interval [0, 1], and (Zi) is a sequence of unobservable i.i.d. standard normal
random variables. We take a nonparametric Bayesian approach, using a Gaussian process prior W = (Wt : t ∈ [0, 1]) on
f , and are interested in the resulting credible sets. These are sets of prescribed posterior probability, which in the Bayesian
paradigm are used to quantify the remaining uncertainty of the statistical analysis. We investigate the coverage of these sets
when treating them as confidence sets in the non-Bayesian setting. Specifically we focus on credible intervals for f (x), the
function f evaluated at a given point x, which can be derived from the marginal posterior distribution ofWx.

As a prior for f we consider the distribution of a scaled Brownianmotion. Thuswe are given amean-zeroGaussian process
W = (Wt : t ∈ [0, 1])with covariance function cov(Ws,Wt) = cn(s∧ t), for given scale factors cn > 0.We take this process
to be independent of the sequence (Zi). In the Bayesian setup the observations are distributed according to the model

Yi = Wxi + Zi.
Furthermore, the posterior distribution of f (x) is the conditional distribution ofWx given Y1, . . . , Yn. In this Gaussian model
the posterior distribution is also Gaussian and hence is characterized by its posterior mean f̂ (x) = E(Wx|Y1, . . . , Yn) and
posterior variance σ 2

n = var(Wx|Y1, . . . , Yn). The natural credible interval with level η for f (x) is the central interval

Cη =

f̂ (x) − σnζη, f̂ (x) + σnζη


,
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where ζη is a standard normal quantile such that P(|Z | < ζη) = η for Z ∼ N (0, 1). The coverage of this interval in the
frequentist setting is the probability Pf (f (x) ∈ Cη), where Pf refers to the distribution of Y1, . . . , Yn in the original model
(1.1), where a ‘‘true’’ f is given.

This model has beenwidely studied in the literature. In Kimeldorf andWahba (1970), Kimeldorf andWahba showed that
the posteriormean is the solution to a penalized smoothing problem. Rates of contraction of the posterior distributionW | Y⃗
relative to the L2-metric were obtained in van der Vaart and van Zanten (2007, 2008, 2011). The present paper studies the
marginal posterior distributionWx | Y⃗ . The results on posteriormean and variance can be used to obtain rates of contraction
for this marginal posterior. Bayesian credible sets for the function f in some infinite-dimensional space were considered
inWahba (1983), Cox (1993), Leahu (2011) and Knapik et al. (2011), but only in a heuristic discussion and simulation study,
without proofs, or only for the white noise model. (Estimation of a smooth functional of f is a different problem, which may
be studied using Bernstein–vonMises theorems.) The present paper extends this to pointwise credible sets in the regression
model. Scaling factors cn in the variancewere introduced in vanderVaart and vanZanten (2007)with the purpose of adapting
the prior to the smoothness of the underlying regression function. These authors show that the rescaled Brownian motion
with cn = n(1−2α)/(1+2α) is a suitable prior for a true function f of Hölder smoothness α, where α ∈ (0, 1]. In this paper, we
obtain a similar result in the marginal setting.

The priorW in this paper takes the valueW0 = 0 at the origin. This could be remedied by adding an independent normal
variable to W , but as we consider the performance of the posterior distribution at fixed x > 0, this will be irrelevant in the
following.

The present model permits a fairly explicit solution. We will consider the case where the design points are given by
xi = i/n+ with n+ = n + 1/2. The exact formulas cannot easily be extended to a more general choice of design points.
Furthermore, we take the scaling factors equal to cn = nβ

+ for some β ∈ (−1, 1).
Define Cα

[0, 1] as the space of Hölder continuous functions with exponent α ∈ (0, 1). The main result of the paper is the
following theorem.

Theorem 1.1. Define ξβ :=
1−β

2(1+β)
. The following holds for the coverage c fη := Pf


f (x) ∈ Cη


:

• If α > ξβ , we have c fη → P(|U| < ζη) =: pη > η for all f ∈ Cα
[0, 1], where U ∼ N (0, 1/2).

• If α = ξβ , then for each p ∈ (0, pη] there exists f ∈ Cα
[0, 1] such that c fη → p.

• If α < ξβ , there exists f ∈ Cα
[0, 1] such that c fη → 0.

In the first of the three cases the credible interval is a conservative confidence set (i.e. pη > η). Although it is wider than
necessary for coverage, its width shrinks to zero at the same order of magnitude as the frequentist confidence interval based
on the posterior mean, which would use the frequentist standard deviation of the posterior mean, rather than the standard
deviation of the posterior distribution. This follows from the fact that pη is strictly smaller than 1. As ξβ ↓ 0 as β ↑ 1, the
range of α for which this favourable conclusion holds can be made arbitrarily large by choice of β . However, we shall see
that

σn ≍ n(β−1)/4.

Therefore using a large value of β will also increase the width of the credible set, even by an order of magnitude.
In the third case the credible interval is too narrow to give positive coverage for all functions of given Hölder smoothness.

The standard deviation of the posterior distribution is of smaller order than the bias of the posteriormean in this case. This is
due to oversmoothing of the true function by the prior, the Bayesian way of choosing too large a bandwidth in a smoothing
method.

Without scaling (i.e. β = 0) the cut-off between good and bad performance of the credible sets is at ξ0 = 1/2. This can
be viewed as the smoothness of Brownian motion itself. In this case, functions of smoothness bigger than 1

2 yield credible
sets with positive coverage, whereas functions that are rougher than Brownian motion do not.

Inspection of the proof shows that the assumption f ∈ Cα
[0, 1] can be relaxed to Hölder continuity in an arbitrarily small

neighbourhood of x.
In the next section, we gain insight into the posterior mean by analysing its coefficients as an L2 projection. In the third

section, we study the bias and variance of the posterior mean as a frequentist estimator, as well as the posterior variance.
Combining these results, we arrive at our main theorem. Throughout, we use A . B to mean A ≤ cB and A ≍ B to mean
A . B and B . A.

2. Understanding the posterior mean

In order to be able to analyse credible sets, we will need to know more about the posterior mean
f̂ (x) = E(Wx | Y1, . . . , Yn). Since conditional expectations correspond to L2 projections, we may write

E(Wx | Y1, . . . , Yn) =

n
i=1

ani Yi = Y⊤an,
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