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a b s t r a c t

In the need for low assumption inferential methods in infinite-dimensional settings,
Bayesian adaptive estimation via a prior distribution that does not depend on the regu-
larity of the function to be estimated nor on the sample size is valuable. We elucidate re-
lationships among the main approaches followed to design priors for minimax-optimal
rate-adaptive estimation meanwhile shedding light on the underlying ideas.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric curve estimation is a fundamental problem that has been intensively studied in a Bayesian framework
only in the last decade, with more than a ten-years delay over the ponderous progress made in the frequentist literature
where rates for point estimators have been developed in many aspects: adaptation, sharp minimax adaptive constants etc.,
see, e.g., Goldenshluger and Lepski (2012) for recent progress in the area. Bayesian adaptive estimation is a main theme: it
accounts for designing a prior probability measure on a function space so that the posterior distribution contracts at ‘‘the
truth’’ at optimal rate, in the minimax sense, relative to the distance defining the risk. The rate then has the desirable prop-
erty of automatically adapting to the unknown regularity level of the estimandum: the correct rate stems, whichever the
true value of the regularity parameter, even if knowledge of it is not available to be exploited in the definition of the prior. As
the amount of data grows, the posterior distribution learns from the data so that the derived estimation procedure, despite
lack of knowledge of the smoothness, performs as well as if the regularity level were known and this information could
be incorporated into the prior. In this sense, adaptation may be regarded as an oracle property of the prior distribution
providing a frequentist large-sample validation of it and, above all, a success of Bayesian nonparametric methods for low
assumption inference in infinite-dimensional settings.

Early influential contributions to Bayesian adaptation are due to Belitser andGhosal (2003) andHuang (2004). The former
article dealswith the prototypical problemof adaptive estimation of themeanof an infinite-dimensional normal distribution
which is assumed to live in a Sobolev space of unknown smoothness level; the latter provides general sufficient conditions for
adaptive density and regression estimationwhich are then applied to illustrate full exactminimax-optimal rate adaptation in
density and regression estimation over Sobolev spaces using log-spline models and full minimax-optimal rate adaptation in
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density estimation over Besov spaces with the Haar basis but at the price of an extra logarithmic term. A third breakthrough
contribution is given in the article of van der Vaart and van Zanten (2009), where adaptation is considered in the statistical
settings of density estimation, regression and classification by introducing as a prior for the functional parameter a re-scaling
of the sample paths of a smooth Gaussian random field on [0, 1]d, d ≥ 1, by an independent gamma random variable. These
three articles are paradigmatic of the main approaches followed for Bayesian adaptation:

(a) the approach that considers the regularity level as a hyper-parameter and puts a prior on it;
(b) the approach that puts a prior on a discrete random variable which may represent the model dimension, the dimension

of the space where the function is projected or the number of basis functions used in the approximation;
(c) the approach based on the re-scaling of a smooth Gaussian random field.

Approach (a), which considers hierarchical models with regularity hyper-parameter, is proposed in Belitser and Ghosal
(2003), where the unknown regularity level is endowed with a prior supported on at most countably many values. The
overall prior is then a mixture of priors on different models indexed by the regularity parameter and leads to exact optimal
posterior contraction rates simultaneously for all regularity levels. The same philosophy is followed in Scricciolo (2006),
where full exact optimal rate adaptive estimation of log-densities in Sobolev ellipsoids is achieved by considering only a
finite number of competing models. In both articles, the key ideas are the following:

(i) the posterior probability of selecting a coarser model than the best one asymptotically vanishes;
(ii) the posterior distribution resulting from the prior restricted to smaller models asymptotically accumulates on a fixed

ellipsoid in the correct space;
(iii) the posterior distribution corresponding to the restricted prior concentrates on Hellinger/ℓ2-balls around the truth at

optimal rate.

In both articles, full minimax-optimal rate adaptation is achieved when the prior on the regularity level can only take
countably many values, while continuous spectrum adaptation is obtained at the price of a genuine power of n in Belitser
and Ghosal (2003) and of an extra logarithmic factor in Lian (2014). In the latter article, adaptation to the regularity level
of the Besov space where the true signal of a Gaussian white noise model is assumed to live is achieved, up to a log-factor,
over the full scale of possible regularity values by considering a spike-and-slab type prior, with a point mass at zero mixed
with a Gaussian distribution, on the single wavelet coefficients of the signal and a prior on a parameter related to the reg-
ularity of the space, but the overall prior is restricted to a fixed Besov ellipsoid. Another extension of Belitser and Ghosal
(2003) to continuous spectrum is Knapik et al. (2012). Also the Bayesian adaptation scheme proposed by Ghosal et al. (2003)
and Lember and van der Vaart (2007) can be ascribed to approach (a). It puts a prior on every model of a collection, each
one expressing a qualitative prior guess on the true density, possibly a regularity parameter, and next combines these priors
into an overall prior by equipping the abstract model indices with special sample-size-dependent prior weights givingmore
relevance to ‘‘smaller’’ models, that is, those with faster convergence rates. Illustrations include finite discrete priors based
on nets and priors on finite-dimensional models for adaptive estimation over scales of Banach spaces like Hölder spaces. A
closely related problem is that of model selection which is dealt with using similar ideas in Ghosal et al. (2008), where it is
shown that the posterior distribution gives negligible weights tomodels that are bigger than the one that best approximates
the true density from a given list, thus automatically selecting the optimal one.

Approach (b) that considers hierarchical models with dimension reduction hyper-parameter is followed in Huang (2004)
and relies on the construction of a fairly simple compound prior called ‘‘sieve prior’’ by Shen andWasserman (2001). A sieve
prior is a mixture of priors,

Π =

∞
k=1

ρ(k)Πk,

with ρ(k) ≥ 0,


∞

k=1 ρ(k) = 1 and, where every single prior Πk is supported on a space of densities Fk which is typically
finite-dimensional and can be represented as {fθ : θ ∈ Θk}. As previously mentioned, the index k may represent the di-
mension of the space where the function is projected, the number of basis functions for the approximation or the model
dimension. A sieve prior can be thought of as generated in two steps: first the index k of a model is selected with probability
ρ(k), next a probabilitymeasure is generated from the chosenmodelFk according to a priorΠk on it. Such finite-dimensional
models may arise from the approximation of a collection of target densities through a set of basis functions (e.g., trigono-
metric functions, splines or wavelets), where a model of dimension k is generated by a selection of k basis functions.
This adaptive scheme is based on a set of assumptions such that they give control in terms of covering numbers of the
local structure of each Θk, they guarantee the existence of a model Fkn receiving enough prior weight ρ(kn), the existence
of a density fβkn

∈ Fkn close to f0 and of neighborhoods of this approximating density being charged enough prior mass by
Πkn . Several examples treated in Huang (2004) using scales of finite-dimensional models are covered with different priors
in Lember and vander Vaart (2007). Further references on adaptive curve estimation via sieve priors are Scricciolo (2008) and
Arbel et al. (2013). Bayesian adaptive procedures via sieve priors on the unit interval include piecewise constant and polyg-
onally smoothed priors based on the Dirichlet process as in Scricciolo (2007), Bernstein–Dirichlet polynomials as in Kruijer
and van der Vaart (2008), mixtures of beta densities as in Rousseau (2010). Other contributions clearly belonging to this
category, while not dealing with Dirichlet mixtures, are de Jonge and van Zanten (2010, 2012), Ray (2013) and Belitser and
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