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a b s t r a c t

We propose a Bayesian nonparametric procedure for density estimation for data in a d-
dimensional simplex. To this aim, we propose a prior distribution on probability measures
based on a modified class of multivariate Bernstein polynomials. The model for the proba-
bility distribution corresponds to amixture of Dirichlet distributions, with randomweights
and a random number of components. Theoretical properties of the proposal are provided,
including posterior consistency and concentration rates of the posterior distribution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with the problem of Bayesian density estimation for data supported on the d-dimensional simplex
∆d =


(w1, . . . , wd) ∈ [0, 1]d :

d
i=1 wi ≤ 1


, wheremethods based on transformations of the data and the normal kernel

are susceptible to boundary effects. For data supported on a convex and compact set, the literature has mainly concentrated
on bounded intervals and hyper-cubes. Motivated by its uniform approximation properties, frequentist and Bayesianmeth-
ods based on univariate Bernstein polynomials andmore general discretemixtures of beta distributions have been proposed
for density estimation for data supported on bounded intervals (Vitale, 1975; Petrone, 1999a,b; Kruijer and Van der Vaart,
2008; Rousseau, 2010). If G : [0, 1] −→ R, the associated Bernstein polynomial of degree k is given by

k
j=0

G(j/k)

k
j


yj(1 − y)k−j, y ∈ [0, 1]. (1)

If G is the restriction of the cumulative density function (CDF) of a probability measure defined on the unit interval, then (1)
is also the restriction of a CDF on [0, 1], and represents a mixture of beta distributions. If G(0) = 0, its density function is
given by

k
j=1

wj,kβ(y | j, k − j + 1), (2)

where wj,k = G(j/k) − G((j − 1)/k), and β(·|a, b) stands for a beta density with parameters a and b. Petrone (1999a,b)
proposed a hierarchical prior for distribution functions on [0, 1], called the Bernstein polynomial prior (BPP). This consists
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of a random density given by expression (2), where k has probability mass function ρ, and given k, wk = (w1,k, . . . , wk,k)
has distribution Hk on the (k − 1)-dimensional simplex. Petrone (1999a,b) referred to expression (2) as the Bernstein poly-
nomial density with parameters k andwk, and showed that if ρ assigns positive mass to all naturals, and the density of Hk is
positive for any point in ∆k, then the weak support of the BPP is the space of all probability measures on ([0, 1] , B ([0, 1])).
Letting ζj,k = M (G0(j/k) − G0((j − 1)/k)) , j = 1, . . . , k,G0 being a probability distribution on (0, 1] andM being a positive
constant, Petrone (1999a,b) used the fact that assuming

wk = (w1,k, . . . , wk,k) ∼ Dirichlet(ζ1,k, . . . , ζk,k),

is equivalent to assuming that G follows a Dirichlet process (DP) prior, G | M, G0 ∼ DP(MG0). Petrone (1999a,b) refers
to the latter model as the Bernstein–Dirichlet prior (BDP), and discussed a Markov chain Monte Carlo algorithm to scan its
posterior distribution. Petrone and Wasserman (2002) studied the consistency of the posterior distribution for the BPP and
Ghosal (2001) provides rates of convergence for the BDP model. A different class of BPP has been considered by Trippa et al.
(2011), where the prior distribution on the weights is defined by means of an auxiliary reinforced urn process.

Extensions based onmultivariate Bernstein polynomials (MBP) defined on the unit hyper-cube have been also considered
in the literature (see, e.g. Tenbusch, 1994; Babu and Chaubey, 2006; Zheng et al., 2010). Babu and Chaubey (2006) studied
a general multivariate version of the bivariate estimator proposed by Tenbusch (1994). Zheng et al. (2010) construct a
multivariate Bernstein polynomial prior for the spectral density of a random field. Multivariate extensions of Bernstein
polynomials defined on ∆d were considered by Tenbusch (1994) to propose and study a density estimator for the data
supported on ∆2. Tenbusch’s estimator arises by taking G to be the restriction of the empirical CDF to ∆2, and it is based on
the class of MBP given in Definition 1.

Definition 1. For a given function G : ∆d −→ R, the associated MBP of degree k on ∆d is defined by

Bk,G(y) =


j∈J k

d

G

j1
k

, . . . ,
jd
k


Mult (j | k, y) ,

where j = (j1, . . . , jd), J k
d =


(j1, . . . , jd) ∈ {0, . . . , k}d :

d
l=1 jl ≤ k


and Mult (· | k, y) stands for the probability mass

function of a multinomial distribution with parameters (k, y).

Although Tenbusch’s estimator is consistent and optimal at the interior points of the simplex, it is not a valid density
function for finite k and finite sample size. Indeed, it is not difficult to show that, under Definition 1, if G is the restriction of
the CDF of a probability measure on ∆d, thenBk,G(·) is not the restriction of the CDF of a probability measure defined on ∆d

for a finite k. In this case,Bk,G(·) can be expressed as a linear combination of CDFs of probability measures defined on ∆d,
where the coefficients are nonnegative but do not add up to 1.

In this paper, we propose and study the properties of a Bayesian nonparametric model for the density estimation for
data support on ∆d, based on a modified class of MBP, referred to as Bk,G, that retains the well known approximation
properties of the classical univariate and standard multivariate versions. An important property of the modified class of
MBP is that if G is the CDF of a probability measure defined on ∆d, then Bk,G is the restriction of the CDF of a probability
measure defined on ∆d. Furthermore, the derivative of Bk,G is a particular class of mixtures of Dirichlet distributions, that
has appealing approximation properties. The organization of the paper is as follows. In Section 2, the modified class of
multivariate Bernstein polynomials is introduced and its main properties are stated. In Section 3, we introduce the proposed
model class and establish its main properties. The most relevant technical proofs are deferred to Section 4.

2. The modified class of multivariate Bernstein polynomials

The modified class of MBP is given in Definition 2. The modified class is obtained by increasing the number of elements
where the sum runs (from J k

d to H k
d ), and increasing the domain of the function G (from ∆d to Rd), in the original class of

MBP given in Definition 1, which implies a change in the parameters in the corresponding multinomial kernel.

Definition 2. For a given function G : Rd
−→ R, the associated MBP of degree k on ∆d is defined by

Bk,G(y) =


j∈H k

d

G

j1
k

, . . . ,
jd
k


Mult (j | k + d − 1, y) , (3)

where j = (j1, . . . , jd), and H k
d =


(j1, . . . , jd) ∈ {0, . . . , k}d :

d
l=1 jl ≤ k + d − 1


.

The modified class of MBP retains the appealing approximation properties of univariate BP and the class given by
Definition 1, that is, point-wise convergence at the continuity points of G and uniform convergence for continuous G. It
is also possible to show that if G is the restriction of the CDF of a probability measure defined on ∆d, then Bk,G(·) is also the
restriction of the CDF of a probability measure defined on ∆d. From expression (3), and after some algebra, it can be shown
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