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a b s t r a c t

It has become increasingly important to understand the asymptotic behavior of the Bayes
factor for model selection in general statistical models. In this paper, we discuss recent re-
sults on Bayes factor consistency in semiparametric regression problems where observa-
tions are independent but not identically distributed. Specifically, we deal with the model
selection problem in the context of partial linear models in which the regression function
is assumed to be the additive form of the parametric component and the nonparametric
component using Gaussian process priors, and Bayes factor consistency is investigated for
choosing between the parametric model and the semiparametric alternative.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Suppose we have two candidate models M0 and M1 for yn ∈ Yn, a set of n observations from an arbitrary distribution
Pn that is absolutely continuous with respect to a commonmeasure µn on Yn. We also assume the two candidate models to
have the following parameters and prior distributions, respectively: θ and π0(θ), λ and π1(λ),

M0 = {pnθ (y
n), θ ∈ Θ, π0(θ)}, M1 = {pnλ(y

n), λ ∈ Λ, π1(λ)}, (1)

where pnθ (y
n) and pnλ(y

n) denote the densities of yn with respect to µn under M0 and M1, respectively.
Based on this set of observations, a common Bayesian procedure to measure the evidence in favor of M0 over M1 is to

assess the Bayes factor (Jeffreys, 1961). Given the two candidate models M0 and M1, the Bayes factor, denoted B01 is given
by the ratio of two marginal densities (Kass and Raftery, 1995),

B01 =
p(yn|M0)

p(yn|M1)
=

m0(yn)
m1(yn)

=


pnθ (y

n)π0(θ)dθ
pnλ(yn)π1(λ)dλ

. (2)

Note that the large value of B01 is a strong evidence in support of model M0 (Jeffreys, 1961; Kass and Raftery, 1995). Accord-
ingly, B01 is expected to converge to infinity as the sample size increases when M0 is the true model. This notion is called
the consistency of the Bayes factor or Bayes factor consistency, and is formulated as follows

lim
n→∞

B01 =


∞, in Pn

θ0
probability, if pnθ0 ∈ M0

0, in Pn
λ0

probability, if pnλ0 ∈ M1,
(3)
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where Pθ0 represents the true probability measure belonging to the null model, and Pλ0 represents the true probability mea-
sure belong to the alternativemodel. In (1)–(3), we typically have inmind thatΛ ismuch larger thanΘ , andΘ is often nested
in Λ. In this paper we consider a setup where Θ ⊂ Rd for some 0 < d < ∞ and Λ = Θ × F , where F is a function space.

Recent studies of Bayes factor consistency have focused on density estimation in the Bayesian goodness-of-fit testing
problems. In goodness-of-fit testing for a parametric null (M0) against a nonparametric alternative (M1), Bayesian
approaches have been investigated particularly in the context of Bayesian nonparametric testing of goodness-of-fit problems
(see Tokdar et al., 2010 for a nontechnical survey). However, because of the specification of an alternative model and the
computation of the Bayes factor in addition to theoretical issues such as Bayes factor consistency, Bayesian nonparametric
goodness of fit testing is often regarded as a challenging inferential problem. In these regards, there have been several
advances in Bayesian goodness-of-fit testing from the nonparametric Bayesian point of view. Readers are referred to
Verdinelli and Wasserman (1998), Berger and Guglielmi (2001), Lenk (2003), Dass and Lee (2004), Walker et al. (2004),
Ghosal et al. (2008), McVinish et al. (2009), and Tokdar et al. (2010). These results on Bayes factor consistency in density
estimation problems are based on verifying sufficient conditions related to posterior consistency and posterior convergence
rates. These conditions are mainly designed for the case of independent and identically distributed (i.i.d.) observations.

In particular, one of these sufficient conditions, the Kullback–Leibler property, in which the prior puts positive mass on
all Kullback–Leibler neighborhoods of the true value of parameter, is known to be fundamental to Bayes factor consistency.
That is, if a model has the Kullback–Leibler property, the Bayes factor always supports the model with the Kullback–Leibler
property eventually when compared with any other model without the Kullback–Leibler property (e.g. Dass and Lee, 2004
and Walker et al., 2004). However, when two competing models have the Kullback–Leibler property, additional conditions
are required for consistent model selection; Ghosal et al. (2008) and McVinish et al. (2009) investigated this issue by
establishing sufficient conditions for the consistency of the Bayes factor under i.i.d. observations.

The consistency of Bayesian model selection in regression problems for independent observations has been largely
studied in Gaussian linear regression models, particularly in the context of variable selection procedures (e.g. Liang et al.,
2008, Casella et al., 2009, Moreno et al., 2010 and Shang and Clayton, 2011). On the other hand, Bayes factor consistency
in partial linear models has not been fully studied in the literature except for a recent work by Choi et al. (2009), and we
need to deal with the consistency of Bayes factor for partial linear models more intensively. In addition, it has become
increasingly important to understand the asymptotic behavior of the Bayes factor for model selection in general statistical
models. Thus, Bayes factor consistency needs to be investigated for statistical problems in non i.i.d. observations such as
regression problems and Markov processes and time series model.

In this paper we discuss recent results on Bayes factor consistency for semiparametric regression problems where
observations are independent but not identically distributed. Specifically, we deal with the model selection problem in
the context of partial linear models in which the regression function is assumed to be the additive form of the parametric
component and the nonparametric component using Gaussian process priors in Section 2, and Bayes factor consistency is
discussed for choosing between the parametric model and the semiparametric alternative under these partial linear models
in Section 3. Concluding remarks are made in Section 4.

2. The Bayesian partial linear model using Gaussian processes

A partial linear model (PLM: see, e.g., Härdle et al., 2004) is a semiparametric regression model whose mean function
consists of two additive components, a linear part and a nonparametric part,

yi = β0 + βT
1wi + f (xi) + σϵi, ϵi

i.i.d.
∼ N (0, 1), (4)

where the mean function of the regression model in (4) has two parts: a p-dimensional parametric part with βT
1wi,

{wi}
n
i=1 ∈ [−1, 1]p, p ≥ 1 and a nonparametric part with an unknown function f (xi), {xi}ni=1 ∈ [0, 1] in the infinite

dimensional parameter space. We consider both the case of fixed design and the case of random design. For the fixed design
case, we assume that the design points are equally spaced. For the random design, we assume that (wi, xi) are sampled from
a probability distribution.

Bayesian approaches to the partial linear models have been studied in the literature by developing different methods for
estimating the nonparametric component f (·) (e.g. the Fourier series Lenk, 1999 and Choi et al., 2009), splines (Fahrmeir
et al., 2013; Chib and Greenberg, 2010; Kyung, 2011), Gaussian processes (Choi and Woo, 2015), smoothing priors (Koop
and Poirier, 2004), and wavelets (Qu, 2006; Ko et al., 2009).

Here, we study specific partial linear models using two different families of Gaussian processes, which are very common
nonparametric priors for Bayesian regression functions. Specifically, the unknown nonparametric function f (·), is a priori
modeled as a Gaussian process (GP) with zero mean function and a suitable covariance function C(·, ·),

f (·) ∼ GP(0, C(·, ·)), (5)

where C(xi, xj) = Cov(f (xi), f (xj)), i, j = 1, . . . , n. Briefly speaking, the Gaussian process f (·) in (5) can be decomposed,
according to the Karhunen–Loève orthogonal expansion (see e.g. Grenander, 1981; Wahba, 1990)

f (x) =

∞
k=0

λkφk(x), (6)
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