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A covering array CA(N; t, k, v) is an N × k array, in which in every N × t subarray, each of the
vt possible t-tuples over v symbols occurs at least once. The parameter t is the strength of the
array. Covering arrays have a wide range of applications for experimental screening designs,
particularly for software interaction testing. A compact representation of certain covering ar-
rays employs “permutation vectors” to encode vt × 1 subarrays of the covering array so that
a covering perfect hash family whose entries correspond to permutation vectors yields a cov-
ering array. We introduce a method for effective search for covering arrays of this type using
tabu search. Using this technique, improved covering arrays of strength 3, 4 and 5 have been
found, as well as the first arrays of strength 6 and 7 found by computational search.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A covering arrayCA(N; t, k, v) is anN×k array in which every subarray induced by a selection of t columns contains all possible
t-tuples over v symbols. Fig. 1 shows a CA(13; 3, 10, 2). A CA(vt; t, k, v) is an orthogonal array, denoted OA(t, k, v); in this case
every t-tuple occurs exactly once. The smallestN for which aCA(N; t, k, v) exists is the covering array number, denotedCAN(t, k, v).

Screening experiments are often used to indicate factors and levels that impact response; once such factors are identified,
more detailed models can then be constructed to measure main effects and interactions. A particular case arises in testing a
complex system for unexpected interactions; in experimental design, covering arrays arise primarily in this setting. Covering
arrays have been the focus of much research, primarily due to their applications in software and hardware interaction testing.
These applications are discussed in Cohen et al. (1997) and Colbourn (2004). Applications in biological sciences also arise (Shasha
et al., 2001).

Our focus is on construction techniques, rather than on the specific application to experimental design. Techniques used to
construct covering arrays include recursive methods (for examples see Hartman and Raskin, 2004; Martirosyan and Van Trung,
2004; Sloane, 1993), algebraic methods (Chateauneuf and Kreher, 2002; Hedayat et al., 1999), and computational search such
as in Cohen (2004, 2005) and Nurmela (2004). Recently, Sherwood et al. (2006) exploited a compact representation of covering
arrays based on permutation vectors. When v is prime or a prime power, a covering perfect hash family CPHF(n; k, vt−1, t) is an
n× k array on vt−1 symbols such that every n× t subarray contains at least one row which is “covering” in the following sense.

The vt−1 symbols in a CPHF can be viewed as a (t− 1)-tuple on v symbols. This (t− 1)-tuple represents a permutation vector
of length vt over the elements of the finite field Fv. Given a (t− 1)-tuple (h1,h2, . . . ,ht−1) with hj ∈ {0, 1, . . . , v− 1} for 1� j� t− 1,

a permutation vector (
−−−−−−−−−−−→
h1,h2, . . . ,ht−1) of length vt has the symbol (ht−1 · �(i)

t−1) + · · · + (h2 · �(i)
2 ) + (h1 · �(i)

1 ) + �(i)
0 in position i
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Fig. 1. A CA(13; 3, 10, 2).

where i is represented in base v as i =∑t−1
k=0v

k · �(i)
k . A row is covering if the expansion of the permutation vectors into columns

results in an OA(t, t, v). When every symbol in a CPHF is expanded in this manner, the result is a covering array.
When i < v, �(i)

k =0 for k >0. Hence, every permutation vector startswith the sequence 0, 1, . . . , v−1. Eliminating these duplicate
rows leads to the key theorem of Sherwood et al. (2006):

Theorem 1.1. If v is a prime or a prime power, and a CPHF(n; k, vt−1, t) exists, then a CA(n · (vt − v)+ v; t, k, v) exists.

We typically omit the exponent, and refer to a CPHF(n; k, v, t) instead of a CPHF(n; k, vt−1, t).
Using backtracking, Sherwood et al. (2006) found covering arrays for strengths 3 and 4 that improve upon other known

constructions. In this paper, we employ the permutation vector representation as the basis of a tabu search method. In this way,
we find a number of improved covering arrays for strengths 3–5; more surprisingly, we find the first covering arrays of strength
6 and 7 from computer search. We conclude by presenting the first existence tables for covering arrays of strength 5, partly to
demonstrate the utility of the arrays found by the heuristic search method.

2. Forming CAs from CPHFs

In order to understand the construction underlying Theorem 1.1, we show the expansion of the following CPHF(2; 10, 3, 3)
into a CA:

11 00 22 21 01 02 10 11 02 12
10 01 11 11 00 22 01 02 20 12

Write each of the vt−1 symbols as a t−1 tuple on v symbols (in this case, the 32 symbols as 2-tuples on 3 symbols). To convert
the symbol 11 (h1 = 1,h2 = 1) into a vector of length 33 each row number i is written as a vt tuple. Hence for example i = 0 is
written as i= 000 and i= 17 is written as i= 122. For row i= 000, the vector is assigned the value 0 · 1+ 0 · 1+ 0= 0. Continuing
in this manner,

i= 001 : 0 · 1+ 0 · 1+ 1= 1
i= 002 : 0 · 1+ 0 · 1+ 2= 2
i= 010 : 0 · 1+ 1 · 1+ 0= 1
i= 011 : 0 · 1+ 1 · 1+ 1= 2
i= 012 : 0 · 1+ 1 · 1+ 2= 0
i= 020 : 0 · 1+ 2 · 1+ 0= 2
i= 021 : 0 · 1+ 2 · 1+ 1= 0
i= 022 : 0 · 1+ 2 · 1+ 2= 1
...
i= 212 : 2 · 2+ 1 · 1+ 2= 1
i= 220 : 2 · 2+ 2 · 1+ 0= 0
i= 221 : 2 · 2+ 2 · 1+ 1= 1
i= 222 : 2 · 2+ 2 · 1+ 2= 2
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