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a b s t r a c t

We consider convergence rates of functional canonical correlation analysis (FCCA). There
are already several studies on FCCA in the literature, which focused on its population
properties as well as consistency. Our setup most closely resembles that of He et al.
(2003). Under an assumption that controls the level of dependence (roughly that the
dependence between the two functional objects is not too high), we derive convergence
rates of the weight functions to their population counterpart. Both upper bound and lower
bound are derived for the L2�norm and the prediction risk (also called Σ-norm) of the
weight functions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Canonical correlation analysis (CCA), introduced by Harold Hotelling (Hotelling, 1936), seeks linear combinations of xARp

and yARq that have maximum possible correlation. In the population, CCA solves the problem maxu;v:VarðuTxÞ ¼ VarðvTyÞ ¼ 1

CovðuTx; vTyÞ to get the first pair of weight vectors. Subsequent weight vectors can be extracted sequentially by adding some
orthogonality constraints with the previously extracted ones.

There are increasingly more cases in practice where data sets are collected in which the basic units of measurements
appear as curves. Functional data analysis, as an important subdiscipline of statistics as of today, is developed to handle this
situation. Many statistical tools from multivariate analysis have been extended, including linear and nonlinear regression
(Cardot et al., 1999; Yao et al., 2005b; Mueller and Stadtmueller, 2005; Yao and Mueller, 2010, nonparametric and
semiparametric regression (Ferraty and Vieu, 2002, 2004; Preda, 2007; Mueller and Yao, 2008; Chen et al., 2011), principal
component analysis (Silverman, 1996; Hall and Mohammad, 2006; Yao et al., 2005a), classification (Hall et al., 2001; Ferraty
and Vieu, 2003, 2004), and clustering (James and Sugar, 2003; Ray and Mallick, 2006; Chiou and Li, 2007; Ma and Zhong,
2008; Jacques and Preda, 2014). In particular, functional version of CCA has been studied in Leurgans et al. (1993), where the
motivating example given is the data on children's gait to study the relationship between knee joint angle and hip joint
angle. Another example of using FCCA is in the study of functional connectivity of the brain on MEG or fMRI data.
Subsequent developments in FCCA have contributed to many theoretical and computational aspects of the method. For
example He et al. (2003) clarified the well-definedness of FCCA in the population and He et al. (2004) proposed several
computational methods. Fukumizu et al. (2007) rigorously proved statistical consistency of CCA in the framework of
reproducing kernel Hilbert space which is slightly more general than FCCA. Based on the observation that weight functions
in FCCA may not always exist (the maximum value is not achieved by any pair even though the value is well-defined),
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Cupidon et al. (2008) suggested using regularized FCCA even in the population to avoid this problem. Eubank and Hsing
(2008) further proposed a very general framework that does not even require the functional variables to be in L2 and studied
its consistency. Finally we mention the more recent work of Yang et al. (2011) that redefined the FCCA to avoid the inverse
problem, which we prefer to call functional singular component analysis instead of FCCA (as do the authors for that paper).
In Yang et al. (2011), since the inverse operator is entirely avoided, theoretically and computationally it becomes simpler (in
particular no regularization is required).

The current paper is solely focused on minimax convergence rates of FCCA under the setup of He et al. (2003) which puts
the functional variables inside L2½0;1� (we will assume that the functions are defined on the unit interval [0,1] without loss
of generality). However, as far as we know, convergence rate for FCCA has never been established in the literature. It is of
significant interest to understand how well the weight functions can be estimated in the minimax sense as a benchmark of
estimation performance, and with convergence defined in different distances. Given the complicated form of the estimator
which is defined as an eigenfunction of some operator making it different frommany existing studies of minimax estimation
in nonparametric regression, this is a challenging task. To obtain nontrivial convergence rate, we will impose stronger
assumptions on the covariance and cross-covariance operators. On the other hand, under these stronger assumptions, the
maximum value in FCCA is always well-defined and achieved by a pair of weight functions.

The rest of the paper is organized as follows. In Section 2, we review the population setup. We also introduce conditions
under which and weight functions are well defined, which are mostly based on He et al. (2003). Section 3 contains the main
theoretical results on convergence rates of the weight functions, showing the upper bound in both L2�norm and prediction
risk (Σ-norm). Section 4 considers derivations of the lower bounds. Section 5 presents a simulation example. Section 6
concludes the paper with a discussion.

2. Functional canonical correlation analysis

In the FCCA problem, we assume X and Y are square integrable random processes indexed by tA ½0;1� which is denoted

simply by X;YAL2½0;1�. As always assumed in the functional linear regression literature (Cardot et al., 1999; Yao et al.,

2005b; Cai and Hall, 2006; Hall and Horowitz, 2007), we assume EJX J4; EJY J4o1 where JX J ¼ ðR 10 X2Þ1=2 is the L2 norm
of X for example. We also use 〈 � 〉 to denote the standard inner product in L2. Note that when studying the population
properties, only EJX J2; EJY J2o1 is necessary. Fourth moment is required when studying convergence rates (see for
example assumption (C3) in the next section). Without loss of generality, we assume that the variables are centered with
EX ¼ EY ¼ 0. For use in FCCA, we define the covariance operators ΣX ¼ E½X � X�, ΣY ¼ E½Y � Y �, which are trace-class

operators under the assumption EJX J2; EJY J2o1. Remember that for f ; gAL2½0;1�, f � g is the linear operator that maps
hAL2½0;1� to 〈g;h〉f AL2½0;1�. As usual we assume that KerðΣXÞ ¼ KerðΣY Þ ¼ f0g. Without this assumption we will simply need
to restrict consideration of weight functions to the subspaces KerðΣXÞ? and KerðΣY Þ? . We also define the cross-covariance
operators ΣXY ¼ E½X � Y� and ΣYX ¼ ΣT

XY ¼ E½Y � X� where ðÞT denotes the conjugate operator.
Under the assumption EJX J2; EJY J2o1, by Mercer's theorem, ΣX ;ΣY can be expressed as

ΣX ¼ ∑
1

j ¼ 1
λXjϕj � ϕj; ΣY ¼ ∑

1

j ¼ 1
λYjψ j � ψ j;

where λX1ZλX2Z⋯40 and λY1ZλY2Z⋯40 are the eigenvalues, and ϕj;ψ jAL2½0;1�; j¼ 1;2;…, are the orthonormal
eigenfunctions. Correspondingly, we have the Karhunen–Loève expansions for the random processes, given by

X ¼ ∑
1

j ¼ 1
ξjϕj; Y ¼ ∑

1

j ¼ 1
ηjψ j:

The expansions above only depend on the marginal distributions of X and Y. In FCCA, we pose the maximization problem

ρ¼ max
ðf ;gÞ:〈f ;ΣX f 〉 ¼ 〈g;ΣY g〉 ¼ 1

〈f ;ΣXYg〉: ð1Þ

Here we only focus on the first pair of weight functions, with the understanding that subsequent pairs can be extracted
sequentially. Also note that we do not distinguish between maximum and supremum in our mathematical expressions. That
is, the maximum value above may not be achieved in general. Nevertheless, we will impose stronger assumptions soon that
get rid of this problem.

To make the maximum value in (1) achievable, we impose the following sufficient (although not necessary) condition
which is the same as Condition 4.5 in He et al. (2003).

(C1) Denote eij ¼ E½ξiηj�. We have ∑1
i;j ¼ 1

e2ij
λ2XiλYj

o1 and ∑1
i;j ¼ 1

e2ij
λXiλ

2
Yj
o1.

Proposition 1. Under condition (C 1), the operators Σ�1=2
X ΣXYΣ

�1=2
Y and Σ�1

X ΣXYΣ
�1=2
Y are Hilbert-Schmidt operators defined on

L2 (by continuity extension). The maximum in (1) is achieved for some pair of weight functions (f,g).
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