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a b s t r a c t

The prediction error (average squared error) is the most commonly used performance
criterion for the assessment of nonparametric regression estimators. However, there has
been little investigation of the properties of the criterion itself. This paper shows that in
certain situations the prediction error can be very misleading because it fails to
discriminate an extreme undersmoothed estimate from a good estimate. For spline
smoothing, we show, using asymptotic analysis and simulations, that there is poor
discrimination of extreme undersmoothing in the following situations: small sample size
or small error variance or a function with high curvature. To overcome this problem, we
propose using the Sobolev error criterion. For spline smoothing, it is shown asymptotically
and by simulations that the Sobolev error is significantly better than the prediction error
in discriminating extreme undersmoothing. Similar results hold for other nonparametric
regression estimators and for multivariate smoothing. For thin-plate smoothing splines,
the prediction error's poor discrimination of extreme undersmoothing becomes signifi-
cantly worse with increasing dimension.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental problem of data analysis is the estimation of a smooth function f : ½a;b�-R from data yi that follow the
model:

yi ¼ f ðxiÞþεi; i¼ 1;…;n;

where the design points xi satisfy arx1ox2o⋯oxnrb and the εi are i.i.d. Nð0; s2Þ random errors. If a functional form for f
is not known, it is appropriate to use a nonparametric regression method. Several such methods have been proposed and
studied, including kernel smoothing, local polynomial smoothing, series estimators, regression splines and smoothing
splines; see Eubank (1988), Eubank (1999), Green and Silverman (1994), Hart (1997), Wahba (1990), and Wand and Jones
(1995) for discussion of these methods.

We will mainly consider smoothing spline estimators. The smoothing spline of degree 2m�1 is defined as the function f λ
that minimizes

n�1 ∑
n

i ¼ 1
ðyi�hðxiÞÞ2þλ

Z b

a
ðhðmÞðxÞÞ2 dx
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in the Sobolev space Wm;2½a; b�. Here λ40 is the smoothing parameter; a larger value of λ yields a smoother estimate. The
most popular smoothing splines are cubic smoothing splines, for which m¼2.

To assess the quality of a spline estimator f λ and hence define the “best” choice of λ, one needs a suitable performance
criterion (optimality criterion). The most commonly used performance measure is the prediction error (average squared
error)

TðλÞ ¼ n�1 ∑
n

i ¼ 1
ðf ðxiÞ� f λðxiÞÞ2; ð1Þ

together with the prediction risk ETðλÞ. A related measure is the (squared) L2 error (integrated squared error)

IðλÞ ¼
Z b

a
ðf ðxÞ� f λðxÞÞ2 dx ð2Þ

together with the associated risk EIðλÞ. Note that, for equally spaced points xi, TðλÞ in (1) is a standard quadrature
approximation of IðλÞ in (2), and so they can be expected to be fairly close.

Most of the extensive literature on the performance of smoothing spline estimators, including various parameter
selection methods, uses the prediction error or L2 error (or risk) as the only performance measure. This includes both
asymptotic analyses as well as simulation studies; see, e.g., Li (1986) and Lee (2003). However, there has not been much
attention given to the question of whether the prediction error or L2 error is actually the most suitable performance
criterion. One of the aims of this paper is to shed light on this question.

It was shown in Marron and Tsybakov (1995) that the use of the L2 error (as well as the L1 and L1 errors) in
nonparametric regression does not properly match what the eye can see. The authors argue that a better qualitative
assessment of an estimated curve, when compared to a true curve, is obtained by considering the distance between the
graphs of the curves (as sets of points in R2), rather than the vertical distance associated with a function space norm, and
they propose several visual error criteria in this way. However, as noted in Marron and Tsybakov (1995), this approach is not
suitable if the regression is to be used for prediction purposes.

In this paper, we take the more general view that the performance criterion used in nonparametric regression should
make the regression suitable for estimation of f(x) on the whole interval ½a; b� and for associated prediction, while, at the
same time, the criterion should be consistent with our visual perception of the quality of the estimator.

We will focus on a specific weakness of the prediction error as a performance measure. Clearly, the prediction error is a
discrete measure in that it depends on f � f λ only through its values at the discrete set of points xi, but this is not its main
weakness. The main problem with the prediction error (as well as the L2, L1 and L1 errors) is that it is insensitive to
deviations in the derivative and (linearized) curvature (and higher derivatives) of the spline f λ. This situation is inconsistent
with our visual perception of the quality of a fitted curve. Because f is smooth, large deviations in the derivative or curvature
of f λ from those of f can be easily identified visually from the graphs of f and f λ.

To make this more concrete, suppose that the error is approximately given by f ðxÞ� f λðxÞCc cos kπx for xA ½0;1�, where
c40 is small and k is a large integer satisfying kZc�1. Assume that the xi are equally spaced in ½0;1� and n is sufficiently
large so that TðλÞC IðλÞ. Then TðλÞC IðλÞCc2=2, which is small even though f � f λ is very wiggly, with large integrated
squared (linearized) curvature satisfyingZ 1

0
ðf ″ðxÞ� f 00λ ðxÞÞ2 dxZKCk2π4=2:

Therefore, the prediction error (and L2 error) fails to detect that f � f λ is very wiggly, and yet this would be easily seen from
its graph.

Clearly, the same conclusion holds if f � f λCh, where h(x) is a short finite sum of the form

hðxÞ ¼∑ðcj cos kjπxþdj sin ljπxÞ
and cj40 and dj40 are small, with kjZc�1

j and ljZd�1
j . Note that this assumption for f � f λ is quite plausible if λ is very

small, because, in this situation, f � f λ would be close to the spline that interpolates the errors εi at the design points xi. It is
likely that this error vector is of high frequency, measured, say, by the number of sign changes. Then, using the Demmler–
Reinsch basis for the space of smoothing splines, f � f λ would be approximately equal to a finite sum involving the high
frequency basis functions, and it is known that, for equally spaced xi, the basis functions are approximately equal to
trigonometric functions; see Culpin (1986), Eubank (1988, Sect. 5.3).

The above reasoning indicates that the prediction error may fail to detect when a spline estimate f λ is very wiggly. It will
be shown that this does actually occur in practice. Moreover, the prediction error can be a misleading performance measure
because it can fail to discriminate an extreme undersmoothed spline estimate from a good estimate. Section 2.1 presents
simulation results that illustrate this property and we identify the situations where it can occur; these are: small sample size
n or small error variance s2 or a function f with high curvature.

In Section 2.2, we define a measure of the prediction error's capacity to discriminate extreme undersmoothing. This is
defined as the probability that the value of the prediction error for the most extreme undersmoothed spline estimate, i.e.,
the interpolating spline, is relatively close to the minimum prediction risk (within a factor D). The larger the value of this
probability, the more likely it is that the prediction error will fail to discriminate extreme undersmoothing. We investigate
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