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a b s t r a c t

We revisit a semiparametric procedure for density estimation based on a convex
combination of a nonparametric kernel density estimator and a parametric maximum
likelihood estimator, with the mixing weight locally estimated by the bootstrap method.
We establish the asymptotic properties of the resulting semiparametric estimator, and
show that undersmoothing at the bootstrap step is necessary if the estimator is to attain a
convergence rate faster than that of the kernel density estimator under a good local
parametric fit. A simulation study is conducted to investigate the finite-sample perfor-
mance of the procedure. Exploiting its adaptivity to the goodness of local parametric fit,
we propose a double bootstrap algorithm to incorporate into the semiparametric
procedure more than one parametric family, and illustrate with a numerical example
the benefits gained thereof.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider a semiparametric approach to density estimation based on a convex combination of a nonparametric kernel
density estimator and a parametric maximum likelihood estimator. Accuracy of the resulting semiparametric estimator
depends on how well the mixing weight adapts to the goodness of fit of the parametric model. It is well known that the
kernel density estimator, although robust against model mis-specification, has a slower convergence rate compared to that
of the maximum likelihood estimator, should the latter be consistent for the true density. On the other hand, model mis-
specification may render the maximum likelihood estimator drastically biased, although its variance is often smaller than
that of the kernel estimator. Thus, for optimal performance of the semiparametric estimator, one would intuitively require
that a zero weight be attached to the kernel density estimator if the parametric model is correctly specified, and to the
maximum likelihood estimator otherwise. A number of empirical mixing weights have been proposed with the aforesaid
optimal properties. For example, Olkin and Spiegelman (1987) estimate the mixing weight by maximising a global pseudo-
likelihood function defined on the observed sample. Their semiparametric estimator succeeds in approximating the
maximum likelihood estimate if the parametric model is correct, and the kernel density estimate if not. In a regression
context, Fan and Ullah (1999) consider a similar semiparametric estimator of the regression function, and establish its
asymptotic adaptivity to global discrepancies between the model-based and true regression functions. The same problem is
studied by Mays et al. (2001), who estimate the mixing weight by cross-validation. In neither of the above works does the
estimated mixing weight avail itself of the fact that even a mis-specified model may contain a density function accurately
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approximating the true density in a local sense. For better adaptivity to local discrepancies between the true density and its
“best” parametric fit, a local estimate is therefore required of the mixing weight. That the bootstrap provides just such a
local estimate has been explored in different semiparametric contexts: see, for example, Kouassi and Singh (1997) for
semiparametric hazard estimation, or Yuan and Yin (2011) for semiparametric estimation of dose–response probabilities.
However, neither of the above two works addresses the important issue concerning the theoretical effects the bootstrap
may have on the semiparametric estimator. Lee (1994) uses the bootstrap approach to define a semiparametric estimator of
a differentiable functional and studies its asymptotic properties under the assumption that the parametric and nonpara-
metric estimators both have the same convergence rate n1=2, a condition which does not hold for kernel density estimation.

Application of the bootstrap to estimate the mixing weight locally for semiparametric density estimation remains as yet
unexplored, and will be the focus of the present paper. We shall establish theoretical properties of the mixing weights,
estimated locally by the bootstrap, and the asymptotic mean squared error of the resulting semiparametric density
estimator. To shed light on its local adaptivity properties, our results are deliberated with explicit reference to the local
discrepancy between the true density function and the best approximating member of the assumed parametric model.
Importantly, we show that for the semiparametric density estimator to capture the fast parametric convergence rate under a
good local parametric fit, the bootstrap kernel density estimator must be sufficiently undersmoothed when calculating the
estimated mixing weight. As an extension to the semiparametric approach, we explore also the possibility of incorporating
more than one parametric family into the estimation procedure. We illustrate how the use of a set of parametric families can
“harmlessly” increase the accuracy of density estimation. The rationale lies in the notion that, when a method is able to
adapt itself to the uncertainty of a parametric model, one may make further improvement by plugging in a wider range of
parametric families to enrich our choice of models, from which a “better” optimal solution may result.

Besides convex combinations, other semiparametric methods have been proposed for density estimation in the
literature. For example, Efron and Tibshirani (1996) convert an essentially nonparametric setting to a parametric one by
embedding the kernel density estimator in a specially designed exponential family, an approach involving no prior
parametric model specification. Hjort and Glad (1995) multiply a parametric density estimate by a correction factor
estimated using a kernel method. Hjort and Jones (1996) model the density by a parametric family but estimate the
parameter by maximising a local kernel-smoothed likelihood function, thus giving the resulting density estimate a
semiparametric flavour. The above three works share a common drawback in that their semiparametric density estimators
always converge at the slow nonparametric rate even if a correct parametric family has been specified for the unknown
density.

2. Semiparametric density estimator

Let ðX1;…;XnÞ be a random sample drawn from a univariate distribution F with density function f ¼ F 0. We consider the
problem of estimating f ðx0Þ, for some fixed x0. Assuming a parametric model for F, that is F ¼ FθAFΘ ¼ fFϑ: ϑAΘg, where Θ
denotes a parameter space in Rd, we would naturally estimate f ðx0Þ by the maximum likelihood estimator f θ̂ ðx0Þ ¼ F 0θ̂ ðx0Þ,
where θ̂ is the maximum likelihood estimator, assumed unique, of θ. If we are uncertain about the plausibility of any
parametric model, we may instead estimate f ðx0Þ by the kernel density estimator f̂ n;hðx0Þ ¼ ðnhÞ�1∑n

i ¼ 1Kððx0�XiÞ=hÞ, for
some kernel function K, which is taken to be a bounded and symmetric density function with zero mean and finite variance,
and for some bandwidth h40.

In order to capitalise on the possible benefits derived from both f θ̂ ðx0Þ and f̂ n;hðx0Þ, we consider their convex combination
ĝ ϵ;n;hðx0Þ ¼ ϵf θ̂ ðx0Þþð1�ϵÞf̂ n;hðx0Þ, ϵA ½0;1�, and choose ϵ to minimise the mean squared error of ĝ ϵ;n;hðx0Þ, yielding the optimal
mixing weight

ϵn x0ð Þ ¼ ζ
EF ½ðf̂ n;hðx0Þ� f ðx0ÞÞðf̂ n;hðx0Þ� f θ̂ ðx0ÞÞ�

EF ½ðf̂ n;hðx0Þ� f θ̂ ðx0ÞÞ2�

 !
; ð1Þ

where ζðxÞ ¼minf1;maxf0; xgg.
The expression (1) depends on the unknown F and cannot be calculated directly. We propose to estimate ϵn by a

bootstrap procedure as follows. Let ðXn

1;…;Xn

nÞ be a generic bootstrap sample drawn from ðX1;…;XnÞ with replacement.
Based on each bootstrap sample we obtain the corresponding maximum likelihood estimate θ̂

n
with respect to the model

FΘ, and the kernel density estimate f̂
n

n;bðx0Þ ¼ ðnbÞ�1∑n
i ¼ 1Kððx0�Xn

i Þ=bÞ, for some bandwidth b possibly different from h. It
has been found that undersmoothing with boh generally works well when the bootstrap is used for constructing
confidence intervals for f ðx0Þ: see, for example, Hall (1992) and Ho and Lee (2008). Denote by En and Pn the expectation and
probability measure, respectively, induced by bootstrap resampling, conditional on ðX1;…;XnÞ. The bootstrap method
estimates ϵnðx0Þ by

ϵ̂n x0ð Þ ¼ ζ
En½ðf̂ nn;bðx0Þ� f̂ n;hðx0ÞÞðf̂

n

n;bðx0Þ� f
θ̂
n ðx0ÞÞ�

En½ðf̂ nn;bðx0Þ� f
θ̂
n ðx0ÞÞ2�

0
@

1
A;

which gives rise to our semiparametric estimator f̂ ðx0Þ ¼ ĝ ϵ̂nðx0Þ;n;hðx0Þ. The bandwidth h can be fixed at a conventional choice
such as hpn�1=5, which minimises the order of the mean squared error of f̂ n;hðx0Þ. The bandwidth b is chosen of order o(h),
the rationale behind which will be explained in Section 3.
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