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a b s t r a c t

In this paper, we consider the problem of estimating the long-run variance (matrix) of an
Rp-valued multiparameter stochastic process {Xk}k∈[1,n]d , (n, p, d ∈ N, p, d fixed) whose
mean-function has an abrupt jump. We consider processes of the form

Xk = Yk + µ + ICn(k)∆,

where IC is the indicator function for a set C , the change-set Cn ⊂ [1, n]d is a finite union of
rectangles and µ, ∆ ∈ Rp are unknown parameters. The stochastic process {Yk : k ∈ Zd

}

is assumed to fulfill a weak invariance principle. Due to the non-constant mean, kernel-
type long-run variance estimators using the arithmeticmean of the observations as amean
estimator have an unbounded error for changes∆ that do not vanish for n → ∞. To reduce
this effect,weuse amean estimatorwhich is based on an estimation of the setCn. In the case
where Cn = (⌊nθ0

1⌋, ⌊nθ
0
2⌋] is a rectangle, we introduce an estimator Ĉn = (⌊nθ̂1⌋, ⌊nθ̂2⌋]

and study its convergence rate.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present and analyze a kernel-type long-run variance matrix (LRV in the following) estimator for a
multivariate random field under the assumption of a non-constant mean. Such an estimator is needed e.g. in change-point
analysis when one is interested in testing whether a given data-set is stationary or whether there is a jump in the mean,
dividing the data into two sets with (different) constant means. In this case, the magnitude of the difference between the
arithmetic means over suitable subsets of the data can be used as an indicator of the likelihood of a non-constant mean.
The resulting tests are often based on the asymptotic behavior of the test statistic under the null hypothesis. For tests based
on the partial sums of observations under suitable weak dependence conditions, a functional central limit theorem can
be used to determine the distributional limit of the test statistic as a function of a multiparameter Brownian motion, and
appropriate normalization can be used to standardize the limit process, leaving the LRV Σ as the only nuisance parameter.
In order to construct asymptotic tests it is therefore important to estimate Σ consistently under the null hypothesis, so
that the unknown LRV Σ may be replaced by its estimator for sufficiently large sample sizes. This has already been widely
investigated for processeswith constantmean functions, amongst others byNewey andWest (1986) andAndrews (1991) for
multivariate time series and later by Politis andRomano (1996), Robinson (2007) and Lavancier (2008) for univariate random
fields. Most of the publications on the subject focus on the (null hypothesis) case of constant means to derive consistency
of the LRV estimators. However, since the estimator for Σ is often used as a scaling factor in change-point tests, it is also
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important to have an estimatorwhich remains stable andboundedwith respect to a changeunder the alternative. Otherwise,
error in the estimation ofΣ might lead to testswhich display lower power for bigger changes. For example Vogelsang (1999)
and Crainiceanu and Vogelsang (2001) investigate the problem of nonmonotonic power under data-dependent bandwidth
choices for a test of mean shift in a univariate time series, noting that this might even lead to tests with no power against
‘‘obvious’’ changes, which could be detected with the naked eye. They conclude that this is due to the fact that the LRV
estimator is constructed under the (misspecified) model of a stable mean. Indeed, under alternatives with abrupt changes
in themean, the arithmetic mean displays a bias which causes associated kernel-type LRV estimators to diverge for growing
bandwidths. In order to avoid this effect – or at least attenuate it – we consider LRV estimators that use a mean estimator
which is more adapted to the change alternative. Depending on the accuracy of the change-set estimation, it is then possible
to obtain a consistent estimator. This method has been well studied in the time series literature. For instance, Juhl and Xiao
(2009) present an LRV estimator for a univariate time series which remains consistent and bounded under both the null
and alternative hypotheses, where the mean function fulfills a Lipschitz condition under the alternative, and Antoch et al.
(1997), Kejriwal (2009) and Hušková and Kirch (2010) investigate an At-Most-One-Change location model. The aim of this
paper is to extend this methodology to the random field case.

This paper is organized as follows: In Section 2, we present notations, the model and the main assumptions on the
considered process. In Section 3, we study the behavior of an LRV estimator constructed without taking the change into
account and compare it to a modification which makes use of estimators for the magnitude and location of the change.
Section 4 gives an example of a change-set estimator with the associated estimation rate. Finally, Section 5 contains a small
simulation study in order to give an impression of the finite sample behavior of the estimators and associated change-point
tests, both for simulated data and a real data-set. Technical proofs are relegated to the Appendix.

2. Model and main assumptions

The following notations will be used throughout this paper. Let Rd (d ∈ N) be the vector space of real vectors
equipped with the usual partial order. For x, y ∈ Rd, we write x ∨ y = (max{x1, y1}, . . . ,max{xd, yd})T and x ∧ y =

(min{x1, y1}, . . . ,min{xd, yd})T as well as ⌊x⌋ = (⌊x1⌋, . . . , ⌊xd⌋)T for the integer part of x, |x| = (|x1|, . . . , |xd|)T and
[x] = x1 · · · xd. We use the notations x(i) or xi for the ith entry of a vector and analogously for matrices. The notation ∥ · ∥ is
used to denote the maximum norm ∥x∥ = maxi=1,...,d |xi|. Furthermore, for any integer k ∈ N0, we denote (k, . . . , k)′ ∈ Nd

0
by k. A rectangle in Rd is a set of the form

(x, y] = {z = (z1, . . . , zd)T : xi < zi ≤ yi, i = 1, . . . , d}

for x, y ∈ Rd ((x, y] = ∅, if xi ≥ yi for some i ∈ {1, . . . , d}). A rectangle in Zd is the intersection of a rectangle in Rd and the
set Zd. We denote the Lebesguemeasure on Rd by λ. Note that for the union of two disjoint rectangles (k1,m1] and (k2,m2]

with endpoints ki,mi ∈ Zd it holds that

λ((k1,m1] ∪ (k2,m2]) = #((k1,m1] ∩ Zd) + #((k2,m2] ∩ Zd),

where #A denotes the cardinality of a finite set A. Therefore, we do not always explicitly distinguish between the notations
and take λ(C) to mean either the Lebesgue measure of a set in Rd or (for finite sets) its cardinality. To simplify notation we
write λ(k,m] = λ((k,m]) for any rectangle (k,m]. We denote the symmetric difference of two sets A and B by A △ B. For
a function f : D → R, D ⊆ Rd, the increment of f over a rectangle (s, t] ⊂ D takes the form

f (s, t] =




ε∈{0,1}d
(−1)

d−
d

i=1
εi
f (s + ε(t − s)), s < t

0, s ≮ t.

Unless stated otherwise, we will always denote the complement of a set R ⊆ (0,n] by Rc
= (0,n] \ R and take sums of

the form


k∈R to mean the summation over all k ∈ R ∩ Zd. The data-generating process considered here is an Rp-valued
random field {Xk} with

Xk = Yk + µ + Ik∈Cn ∆ = Yk + µ(k), k ∈ [1, n]d ∩ Zd, (1)

with a shift ∆ that fulfills ∆T∆ > 0, a subset Cn ⊂ [1, n]d and the mean function µ(k) = EXk = µ + Ik∈Cn∆. All
the parameters are considered unknown. Since the mean deviates from its value µ on Cn, we call this the change-set. In
particular, we have Cn = (0, k02] (d = 1) and Cn =


k0
1, k

0
2


(d ≥ 1) in mind. For such rectangles Cn the resulting change-set

problem is the straightforward generalization to the multiparameter case of a one-dimensional change-point problemwith
two change-points 0 < k0 < m0 < n. This type of problem is known in the change-point literature as an epidemic change-
point. A more detailed description of the epidemic change-point problem and its multiparameter version, as well as some
references to further research, can be found in Bucchia (2014). In order to allow slightly more general change-sets for the
LRV estimation, we consider the following case:
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