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a b s t r a c t

In sensitivity testing the test specimens are subjected to a variety of stress levels to
generate response or nonresponse. These data are used to estimate the critical stimulus
(or threshold) level of the experimental object. Because of its versatile applications,
several sensitivity testing procedures have been proposed and used in practice. There
remains the outstanding question of finding an efficient procedure, especially when the
sample size is small and the interest lies in the extreme percentiles. In the paper we
propose a novel three-phase procedure, dubbed 3pod, which can be described as a trilogy
of “search-estimate-approximate”. A core novel idea is to choose the stress levels to
quickly achieve an overlapping data pattern which ensures the estimability of the
underlying parameters. Simulation comparisons show that 3pod outperforms existing
procedures over a range of scenarios in terms of efficiency and robustness.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In some experimental investigations each experimental unit has a critical stimulus level that cannot be observed directly.
The distribution of these critical levels (or thresholds) over test specimens is of primary interest. In pyrotechnic applications
the stimulus (or stress) level, denoted by x, may be the drop height of an explosive, or the pressure on a pile of ammunition,
and the response, denoted by y, is binary (e.g., explosion/non-explosion). In industrial applications, xmay be the wind speed
in a wind-tunnel experiment or the dosage of a compound in a toxicity study. Sensitivity tests are commonly used to
estimate some aspects of this distribution. Numerous methods have been proposed for conducting sequential sensitivity
testing. But there remains the outstanding question of finding a sequential procedure that works well when the test sample
size is small, especially for estimating extreme quantiles. For example, there is no clear winner among the competing
methods in a comprehensive simulation study reported by Young and Easterling (1994). The median is considered because it
is easier to estimate (i.e., more information in the data). And engineers often use it as a benchmark, especially during
product development. However, to assess the reliability of a product for field use, the interest and focus is often on the
extreme percentiles with pZ0:9 or even pZ0:99.

The problem can be formulated as follows. Let y¼1 or 0 denote the binary outcome, response or nonresponse
respectively and F(x) denote the probability Prob (y¼ 1jx) of response at a given stimulus level x. Usually we consider the
location-scale model:

Fðx; μ; sÞ ¼ Gððx�μÞ=sÞ; ð1Þ
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where μ and s40 are unknown parameters and G is a known distribution function. Define xp to be the pth quantile of the
distribution, i.e., FðxpÞ ¼ p. Hence xp ¼ μþsG�1ðpÞ. Many methods have been proposed for quantile estimation. A review will
be given in Section 2. However, when p is large, e.g., p¼0.99 or 0.999, and the sample size is small to moderate, accurate
estimation of extreme quantiles is still a challenging problem.

The main purpose of this paper is to develop a new three-phase sequential procedure that can find the desired stimulus
levels more precisely by quickly and efficiently exploiting the information in the test data and expert knowledge. In Section
2, we will give a brief review of some existing methods that are known to be competitive or used in practice. In Section 3, we
describe the proposed procedure. Its phase I is to generate some response and nonresponse values, to identify a reasonable
experimental range, and to move the stress levels to achieve an overlapping pattern. Phase II is to facilitate the maximum
likelihood estimation of the parameters in the assumed model and to spread the stress levels for optimal parameter
estimation. Once the data pattern is in good shape, we move to Phase III which uses an efficient approximation scheme to
get the stress levels converge to the unknown quantile quickly. This three-phase procedure can be viewed as a trilogy of
“search–estimate–approximate”. Section 4 gives one example to illustrate the key steps of the three-phase procedure.
Simulation comparisons of the procedure with some existing methods are given in Section 5. Concluding remarks and
further questions are given in Section 6.

2. Review of some existing methods

The literature contains many studies that compare a large number of methods. An early one with a good review is
Wetherill (1963). Some of the papers mentioned in this section also have good reviews. Therefore we will confine our
review in this section to those that will be compared with our method in Section 3. First is the up-and-down method (Dixon
and Mood, 1948), a.k.a. the Bruceton test. It increases (and respectively decreases) the x value by a step length d if y¼0 (and
resp. y¼1). Because of its simplicity, it is still widely used, even though it has been known among researchers to be
inefficient in most situations. It is only for estimating the median x0:5. The Robbins and Monro (1951) stochastic
approximation procedure and its adaptive version (Lai and Robbins, 1979) are known to be much more efficient than the
up-and-down method. Joseph (2004) recognized that the procedure, originally developed for continuous data, is not well
suited for binary data. He then modified the Robbins–Monro (RM) procedure as follows. Let θ¼ xp and assume the prior
distribution of θ is Nðx1; τ21Þ. Consider the following stochastic approximation scheme:

xiþ1 ¼ xi�aiðyi�biÞ; iZ1; ð2Þ
where ai and bi are two sequences of constants. Let Zi ¼ xi�θ; iZ1. He proposed to choose ai and bi such that EðZ2

iþ1Þ is
minimized subject to the condition EðZiþ1Þ ¼ 0. Under the normal approximation of the distribution of Zi by Nð0; τ2i Þ, he
showed that the solution is given by

bi ¼Φ
Φ�1ðpÞ

ð1þβ2τ2i Þ1=2

( )
; ai ¼

1

bið1�biÞ βτ2i
ð1þβ2τ2i Þ

1=2 ϕ
Φ� 1ðpÞ

ð1þβ2τ2i Þ
1=2

� �
;

τ2iþ1 ¼ τ2i �bi 1�bið Þa2i ; β¼ G′ðG�1ðpÞÞ
ϕðΦ�1ðpÞÞ �

1
s
; ð3Þ

where Φð�Þ is the stand normal CDF and ϕð�Þ is its density function. For the sake of brevity, we shall refer to this binary
version of the RM procedure as the Robbins–Monro–Joseph (RMJ) procedure. If the true distribution is normal (G¼Φ), then
β in (3) reduces to s�1. Joseph (2004) recommended the choice

τ1 ¼
c

Φ�1ð0:975Þ : ð4Þ

We choose c¼5 in the simulation study for RMJ. As is common in stochastic approximation, the last x value is used as the
estimate of the unknown value xp. That is, for N iterations, use xNþ1 as the estimate.

Another alternative is the MLE recursive method due to Wu (1985). Approximate the true unknown model by using a
parametric model FðxjγÞ like the logit or probit indexed by a few parameters, e.g., γ ¼ ðμ; sÞ. After n runs, let γ̂n be the MLE of γ.
The next run is chosen at the level xnþ1 defined as Fðxnþ1jγ̂nÞ ¼ p. However the method can only be used if the MLE of (μ; s)
in the model (1) exists. According to Silvapulle (1981), a necessary and sufficient condition for the existence of MLE is to
have an overlapping pattern in the data. That is, the largest x value among the yi's with y¼0, denoted byM0, should be larger
than the lowest x value among the yi's with y¼1, denoted by m1, namely

M04m1: ð5Þ
Wu (1985) recognized that his method needs to start with an initial design that satisfies this condition. A Bayesian extension
of Wu's method was proposed by Joseph et al. (2007). We refer to ½m1;M0� as the overlapping interval. If M0rm1, we refer to
½M0;m1� as the separation interval because the region for nonresponse ðy¼ 0Þ is separated from the region for response
ðy¼ 1Þ. If a separation pattern is observed, taking the next stress level x within the separation interval will not change the
separation pattern (but the interval will get shorter). We refer to this as “trapped in separation”. At a certain point, the next
stress level should be taken outside the separation interval in order to break the logjam.
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