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a b s t r a c t

Motivated by an application from finance, we study randomly left-censored data with
time-dependent covariates in a parametric additive hazard model. As the log-likelihood is
concave in the parameter, we provide a short and direct proof of the asymptotic normality
for the maximal likelihood estimator by applying a result for convex processes from Hjort
and Pollard (1993). The technique also yields a new proof for right-censored data. Monte
Carlo simulations confirm the nominal level of the asymptotic confidence intervals for
finite samples, but also provide evidence for the importance of a proper variance
estimator. In the application, we estimate the hazard of credit rating transition, where
left-censored observations result from infrequent monitoring of rating histories. Calendar
time as time-dependent covariates shows that the hazard varies markedly between years.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider parametric modeling of left-censored durations. Being a special case of double censoring (see for example
Fernandez et al., 1999, 2002, and the papers cited therein), so far parametric left censoring has been applied in Lynn (2001).
Our aim is to contribute a detailed proof for the asymptotic normality of the maximum likelihood estimator (MLE). One
attempt to establish the asymptotic normality of the MLE would be a linearization of the score equation. To this end, every
sequence of MLEs maximizing the likelihood must converge to the true parameter value. Wald was the first to establish
conditions for this type of consistency (Wald consistency). In contrast, in Cramer's concept of consistency at least one
sequence of solutions for the score equation needs to converge (Cramer consistency). The latter concept needs fewer
technical effort, as compared to the Wald consistency. However, Cramer consistency is not sufficient to prove asymptotic
normality (see Lehmann, 1998, Chapter 6, for a detailed discussion).

We restrict our analysis to parametric left censoring, as in Gomez et al. (1992) or Lynn (2001). In our model, the log-
likelihood is a concave function of the parameters and allows for Theorem 2.2 of Hjort and Pollard (1993) to be applied. The
approach circumvents the problem of establishing Wald consistency in a first step and, additionally, allows for not
necessarily identically distributed duration times. In particular, we include time-dependent covariates. In order to confirm
the conditions of the theorems, we use the boundedness of the covariates, the concavity of the log-likelihood which follows
by the concavity of the log-density, and the finiteness of the expected second and third derivatives of the density and the
log-density. Asymptotic normality of the MLE is required for constructing asymptotic confidence intervals. In order to
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calculate the standard error, the Fisher information must be studied being defined as minus the expectation as the second
derivative of the density. As under weak regularity conditions, the Fisher information coincides with the expectation of the
squared first derivative, observed versions of both are studied. We prove that both the observed Fisher informations
consistently estimate the Fisher information.

Monte Carlo simulations are carried out to verify that the nominal level of the confidence interval is attained. We
compare the finite sample properties of all four Fisher informations mentioned above. The simulations show that even for
medium size samples, the nominal level of the confidence interval is attained with high accuracy in three of four cases. With
respect to the application, the probability of default (PD) is an important parameter in the framework of credit ratings. It is
to be estimated with the help of internal default data (see Basel Committee on Banking Supervision, 2004, paragraph 461ff).
As a consequence of the model in Weißbach and Mollenhauer (2011) transitions to an adjacent class are exponentially
distributed, but, see Mählmann (2006), can only be observed left-censored. We include the influence of calendar time on the
transition hazard, using time-dependent dummies. In this particular model, we prove that the Fisher information is positive
definite, which has to be assumed in the general left censoring framework.

2. Censoring model

Instead of an event time X, or more precisely an age-at-event, we observe in the left censoring model only

ðT ;ΔÞ ¼ ðmaxðX;CÞ; I½C;1ÞðXÞÞ;

where C is an external unobservable influence and I½C;1Þ is the indicator function of ½C;1Þ. Hence observations are in
R� f0;1g. As dominating measure on this sample space we use μ � κ, where μ is the Lebesgue measure on the Borel sets of
R, κ is the counting measure on f0;1g, and μ � κ is the symbol for the product measure. Moreover we use the abbreviation
dt≔μðdtÞ and the convention 00 ¼ 0. The proof of the following lemma is standard.

Lemma 1. Suppose X and C are independent with c.d.f. F and G and (Lebesgue) densities f and g. If Q denotes the distribution
of ðT ;ΔÞ then

h t; δð Þ≔ dQ
dðμ � κÞ t; δð Þ ¼ f ðtÞδFðtÞ1� δGðtÞδgðtÞ1� δ: ð1Þ

We assume that X1;…;Xn is a sample of independent, but not necessarily identically distributed durations from the
parametrized families ðFi;θÞθAΘ; i¼ 1;…;n. Denote by ðf i;θÞθAΘ, ΘDR, the associated families of densities. Moreover,
the censoring times C1;…;Cn are assumed to be independently distributed and independent of X1;…;Xn. Assume that
the censoring is non-informative, which means that its c.d.f. Gi do not depend on θ. To compute the log-likelihood, adapt f
and F in (1) as f i;θ and Fi;θ, respectively. The resulting distribution and density depend on θ and will be denoted by Qi;θ , and
hi;θðt; δÞ. The log-likelihood is

ln Lnðθ; T1;…; Tn;Δ1;…;ΔnÞ ¼ ∑
n

i ¼ 1
ln hi;θðTi;ΔiÞ

¼ ∑
n

i ¼ 1
ðΔi ln f i;θðTiÞþð1�ΔiÞðln ðFi;θðTiÞÞ

þ ∑
n

i ¼ 1
ðΔiGiðTiÞþð1�ΔiÞðln giðTiÞÞ: ð2Þ

Note that for estimating θ, it suffices to consider the first summands of the log-likelihood. In order to guarantee the
assumptions needed to prove asymptotic normality it is necessary to formulate conditions on the event distribution. Recall
that the density f(t) of the univariate X and its hazard rate λðtÞ are related by

f ðtÞ ¼ I½0;1ÞðtÞλðtÞ exp �
Z t

0
λðsÞ ds

� �
ð3Þ

and that for a given function λ, the right-hand term in (3) defines a probability density if and only if

λðtÞZ0;
Z 1

0
λðsÞ ds¼1: ð4Þ

A flexible and tractable model for the event times is the additive hazard model with b time-dependent fixed regressors zi;jðtÞ,
see Andersen et al. (1993, Formular 7.1.4)

λi;θðtÞ ¼ ∑
b

j ¼ 0
θjzi;jðtÞ; zi;0ðtÞ � 1; ð5Þ
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