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a b s t r a c t

We consider regularization of the parameters in multivariate linear regression models
with the errors having a multivariate skew-t distribution. An iterative penalized likelihood
procedure is proposed for constructing sparse estimators of both the regression coefficient
and inverse scale matrices simultaneously. The sparsity is introduced through penalizing
the negative log-likelihood by adding L1-penalties on the entries of the two matrices.
Taking advantage of the hierarchical representation of skew-t distributions, and using the
expectation conditional maximization (ECM) algorithm, we reduce the problem to
penalized normal likelihood and develop a procedure to minimize the ensuing objective
function. Using a simulation study the performance of the method is assessed, and the
methodology is illustrated using a real data set with a 24-dimensional response vector.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate linear regression analysis is concerned with linear relationships among q response variables Y1, Y2,…, Yq and
a single set of p predictor variables x1, x2, …, xp:

Yk ¼ b1kx1þ⋯þbpkxpþεk; 1rkrq:

Suppose that yi ¼ ðyi1; yi2;…; yiqÞ> is the ith observation of the response variables, xi ¼ ðxi1; xi2;…; xipÞ> is the corresponding
values of the predictor variables and ϵi ¼ ðεi1;…; εiqÞ> is the vector of errors. Then, the multivariate linear regression can be
simply expressed in matrix form as

Y ¼XBþE; ð1Þ

where Yn�q ¼ ðy1;…; ynÞ> , Xn�p ¼ ðx1;…; xnÞ> , Bp�q ¼ ðbjkÞ and En�q ¼ ðϵ1;…; ϵnÞ> are the response, predictor, regression
coefficient and error matrices, respectively.

The multivariate linear regression has beenwidely applied in many areas, such as chemometrics, econometrics and social
sciences. The errors ϵi's are commonly assumed to be independent and normally distributed (see Anderson, 2003), i.e.,
ϵi �i:i:d:Nqð0;ΣÞ and the regression coefficient matrix B and covariance matrix Σ are estimated via their maximum likelihood
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estimates (MLEs):

B̂ ¼ ðX>XÞ�1X>Y ; Σ̂ ¼ S ¼ 1
n
ðY�XB̂Þ> ðY�XB̂Þ:

The MLE of B turns out to be equivalent to regressing each response variable on the same set of predictors separately, so
that it does not account for the correlations among the response variables. Moreover, for high dimensional data, particularly
when p and q are larger than n, the regression coefficient matrix B cannot be computed using the above formula since X is
not of full rank, and the sample covariance matrix is known to be a highly unstable estimator of Σ (Ledoit and Wolf, 2004).
In these situations, the traditional estimators for B and Σ with pq and qðqþ1Þ=2 parameters, respectively, have rather poor
performances and are not suitable for prediction and other applications. In recent years, various alternatives involving
dimension-reduction and regularization have been proposed in the literature where the focus is on estimating either B or Σ
alone. In the context of regularization, these methods are referred to under the headings of regularized multivariate
regression (Peng et al., 2010) and regularized covariance estimation (Bickel and Levina, 2008), respectively.

Reduction of the pq parameters in the regression coefficient matrix B is usually done through the classical dimension
reduction techniques such as the reduced-rank regression (Reinsel and Velu, 1998), criterion-based model selection
methods (Bedrick and Tsai, 1994), principal component regression, partial least squares (Vinzi et al., 2010) and linear factor
regression (Carvalho et al., 2005). The more modern approach is to reduce the number of regression parameters through
regularization which may force some entries of B to zero (Yuan and Lin, 2006). These two broad approaches can be unified
and viewed as estimating B by solving the following constrained optimization problem:

B̂ ¼ arg min
B

ftr½ðY�XBÞ> ðY�XBÞ�g subject to : CðBÞrt; ð2Þ

where CðBÞ is a scalar function, and t is a nonnegative number. An early and natural constraint is CðBÞ ¼∑j;kb
2
jk so that (2)

reduces to solving a ridge regression problem. The L1-norm constraint or CðBÞ ¼∑j;kjbjkj leads to the Lasso (Tibshirani, 1996)
estimate of B. Using the Lagrangian form of the Lasso penalty, this optimization problem takes the form

B̂ ¼ arg min
B

tr½ðY�XBÞ> ðY�XBÞ�þλ∑
j;k
jbjkj

( )
; ð3Þ

where λ is the tuning parameter.
Covariance estimation is an important problem in many areas of statistics dealing with correlated data (Pourahmadi,

2011). A wide range of alternatives to the sample covariance matrix has been developed in the last decade or so involving
regularization of large covariance matrices. A common approach is the ridge regularization which estimates the covariance
matrix as an optimal linear combination of the sample covariance matrix and the identity matrix (Ledoit and Wolf, 2004;
Warton, 2008). Recently, sparse estimators of the covariance matrix Σ and the precision matrix Ω¼ Σ�1 are proposed by
adding to the normal likelihood a Lasso penalty on their off-diagonal entries (Bickel and Levina, 2008; Friedman et al., 2008;
Rothman et al., 2008; Mazumder and Hastie, 2012). For normally distributed data, a penalized likelihood approach for joint
estimation of ðB;ΩÞ has been proposed in Rothman et al. (2010) and further studied by Lee and Liu (2012). The associated
optimization problem is not convex in ðB;ΩÞ, and is known to be computationally demanding and unstable when p and q are
large relative to n. In particular, for p4n the MLE of the precision matrix can diverge to infinity (Lee and Liu, 2012, p. 245).

In practice, the normality assumption is usually violated because of the presence of skewness and kurtosis in real data
(Hill and Dixon, 1982). Thus, one may seek more flexible parametric families of multivariate distributions capable of
modeling such features of the data. The family of skew-normal distributions with a vector parameter to capture the
skewness in the data has been widely studied due to its mathematical tractability and appealing probabilistic properties
(Azzalini and Dalla-Valle, 1996; Azzalini and Capitanio, 1999; Azzalini, 2005). An extension of the skew-normal distribution
is the multivariate skew-t distribution which allows for both nonzero skewness and heavy tails in the distribution (Branco
and Dey, 2001). Some of the probabilistic properties of the skew-t distributions and their applications were investigated by
Azzalini and Capitanio (2003). For a general background on the skew-normal and related distributions, see Genton (2004).
A practical problem when fitting such models to data is the divergence of the maximum likelihood estimator of the
skewness parameter in finite samples (see Section 5 of Azzalini and Capitanio, 1999).

In this paper, we assume that the errors ϵi's in the model (1) have a multivariate skew-t distribution and consider
regularizing the two matrices jointly. Our approach relies on and is closely related to that of Rothman et al. (2010) in which
sparse estimators for both B and Σ are constructed simultaneously by minimizing the penalized negative normal log-
likelihood:

Lp B;Ωð Þp 1
n
trfΩðY�XBÞ> Y�XBð Þg� log Ωjj

þλ1 ∑
k0 ak

jωk0kjþλ2∑
j;k
jbjkj; ð4Þ

where Ω¼ ðωk0kÞ ¼Σ�1 and λ1; λ2 are the two tuning parameters to be determined from the data. The analogue of (4) for
multivariate skew-t is quite complicated. However, since a multivariate skew-t distribution is conditionally normal given the
relevant latent variables we use the expectation conditional maximization (ECM) algorithm (Meng and Rubin, 1993) to
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