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a b s t r a c t

In the wide-ranging scope of modern statistical data analysis, a key task is identification of
outliers. For any outlier identification procedure, one needs to know its robustness against
masking (an ‘‘outlier’’ is undetected as such) and swamping (a ‘‘nonoutlier’’ is classified as an
‘‘outlier’’). Masking and swamping robustness are interrelated aspects whichmust be stud-
ied together. For such purposes, Serfling and Wang (2014) provide a general framework
applicable in any data space. Implementation, however, with particular outlier identifiers
in particular types of data space, requires additional theoretical development specialized
to the chosen setting. Even the case of univariate data presents nontrivial challenges. Here
we apply the framework to study themasking and swamping robustness properties of two
leading types of nonparametric outlier identifiers, scaled deviation outlyingness and cen-
tered rank outlyingness. The results shed new light on the choice between (Median, MAD)
and (trimmed mean, trimmed standard deviation) in using scaled deviation outlyingness.
Also, our findings explain how the boxplot, a leading descriptive tool, performs using a hy-
brid outlyingness function incorporating a quantile-based component to describe themid-
dle half of a data set and a scaled deviation outlyingness component for outlier detection.
For both goals, the boxplot greatly favors swamping robustness over masking robustness.
We also formulate a variant boxplot offering amore favorable trade-off between these two
criteria.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Crucial to data analysis is the identification of outliers and anomalies,whichmaybenuisances to be eliminated or ignored,
or possibly targets of special interest. Errors to be avoided in so far as possible are ‘‘masking’’ of an outlier as a nonoutlier
and ‘‘swamping’’ of a nonoutlier as an outlier. It is important to evaluate, for any outlier identification procedure, both its
masking robustness and its swamping robustness, which are interrelated and trade off against each other.

Quantitative measures for such purposes, the masking breakdown point (MBP) and the swamping breakdown point (SBP),
are studied here for two well-established types of univariate nonparametric outlier identifiers, scaled deviation and centered
rank. Besides providing better understanding of these two important outlyingness functions, the results clarify how the
design of the popular boxplot greatly favors swamping robustness over masking robustness. These insights provide a basis
for designing a variant boxplot that balances somewhat more equally across these two performance characteristics.
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Notions ofMBP and SBP have been developed in a series of papers by Davies andGather (1993), Becker andGather (1999),
Dang and Serfling (2010), and Serfling and Wang (2014). The latter paper provides the first broad foundational framework
for coherent study of MBP and SBP for any outlier identification procedure in any data space, and the treatment includes
several key general lemmas aimed at facilitating practical application of the framework. However, application of this general
framework is not immediate, but in fact requires innovative further development that is specialized to the particular data
setting under consideration. Even the case of univariate data space is nontrivial, and, as the first application of the general
framework, is the target of the present paper.

Our setting is nonparametric outlier identification, where the bulk of the data consists of ‘‘regular’’ observations from a
distribution F that is unknown and not assumed to belong to a specified parametric family. The central goal is to characterize
the outlyingness of points x relative to the distribution F , in terms of an outlyingness function O(x, F). Such a function
corresponds to a global view of x, in comparison with the density function f (x) which quantifies local probability mass
at x. It yields a ‘‘center’’ (the minimum outlyingness point), a ‘‘middle half’’ region of the 50% least outlying points, and
thresholds for selected degrees of outlyingness. The sample version O(x, Xn) analogously structures a data set Xn. Being
based on a function and thus algorithmic in its formulation, a nonparametric outlier identification procedure does not depend
critically on graphical views or other subjective criteria and can be used in online data analysis and statistical learning.

Nonparametric outlier identification differs in orientation and style from parametric outlier identification, which is
oriented to a specified model for the ‘‘regular’’ observations, typically the normal, and has goals such as parametric model-
fitting after elimination of outliers, or robust regression modeling in the normal model setting. For example, the ‘‘forward
search’’ method (Atkinson and Riani, 2000; Atkinson et al., 2010) utilizes explicitly the assumed parametric model and
carries out diagnostics via graphical displays that are interpreted subjectively.

In our nonparametric treatment, sample ‘‘outliers’’ are points with O(x, Xn) above some specified threshold λ, and these
may include both anunknownnumber of ‘‘regular’’ observations from F and some ‘‘contaminants’’ arising fromother sources
than sampling from F and typically in or toward the tail regions of the data. One goal is to detect the presence of contaminants
and sort them out from the regular points. However, such contaminants can seriously disrupt the performance of O(x, Xn)
as a surrogate for O(x, F), so we need O(x, Xn) to be robust against bothmasking and swamping, on the basis of well-defined
quantitative criteria.

Our objective measures of masking and swamping robustness, the MBP and SBP, are the minimum fractions of points
in Xn which, if replaced in a suitable way, cause the given procedure to mask outliers or to swamp nonoutliers, respectively.
Higher MBP and SBP are better.

More precisely, for each of MBP and SBP, there are two complementary versions, Type A and Type B, making four
robustness measures in all. Type A MBP measures the extent to which an extreme outlier of F can be masked in the sample
as a nonoutlier at λ outlyingness level, while Type B MBPmeasures how deeply (centrally) in the sample a γ level outlier of
F can be masked as a nonoutlier. On the other hand, Type A SBP measures how centrally a nonoutlier of F can be swamped
as a λ level sample outlier, while Type B SBP measures the most extreme sample λ threshold at which a γ level nonoutlier
of F can be swamped as a sample outlier. The Type A measures are based on a given choice of sample threshold λ and are
thus paired together, whereas the Type B measures involve a given choice of F threshold γ and thus are paired together.

Unfortunately, the masking and swamping robustness of outlier identifiers cannot be inferred directly from the
‘‘ordinary’’ robustness properties of the various estimators that may be involved in their formulation. Rather, the notions of
MBP and SBP and these four specialized measures are needed. Also, since MBP and SBP trade off against each other, these
must be considered in concert.

While the breakdown point (BP) for estimators is a well-established and widely applied concept, notions of MBP and
SBP are more problematic and have received only limited treatment prior to the general framework of Serfling and Wang
(2014). Davies and Gather (1993) treat certain notions of Type A MBP and Type B SBP in the univariate parametric setting of
the contaminated normal model, Becker and Gather (1999) treat Type A MBP in the setting of the multivariate contaminated
normal model, and Dang and Serfling (2010) treat Type A MBP in the general nonparametric multivariate setting.

Herewe comprehensively treatMBP and SBP for the sample versions of two important univariate outlyingness functions:
scaled deviation outlyingness

O(x, F) =

x − µ(F)

σ (F)

 , −∞ < x < ∞, (1)

with µ(F) and σ(F) location and spread measures, respectively, and centered rank outlyingness

O(x, F) = |2F(x) − 1|, −∞ < x < ∞, (2)

each increasing as x moves outward from µ(F) or Median(F), respectively. Scaled deviation outlyingness dates from
Mosteller and Tukey (1977), while centered rank outlyingness is rooted in classical inference based on quantiles and ranks.
These outlyingness measures are well suited to the nonparametric approach, since they neither require nor put to use an
assumption of symmetry as is inherent in the contaminated normal parametric approach.

The results of this paper are as follows. In Section 2 we define the MBP and SBP measures and provide key lemmas
instrumental in evaluating them. In Section 3 we develop and discuss MBP and SBP results for scaled deviation outlyingness
and centered rank outlyingness. Our results shed new light on the choices (Mean, SD), (Median, MAD), and (trimmed mean,
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