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1. Introduction

It is well known that a common problem in statistics is to explore the relationship between a variable of interest Y (called
response variable) and an explanatory variable X. This paper focuses on the case where Y is a scalar response variable and
X is of functional nature which takes values in some abstract infinite dimensional space (2Z, d(., .)), where d(., .) is an
associated semi-metric. In this framework, let us consider the following functional nonparametric regression model:

Y =r(X)+e, (1.1)

where r(.) is an unknown smooth functional regression operator from .# to R, and ¢ is the random error with Ee = 0 and
0 < Var(e) < oo.

Compared with the classical nonparametric regression framework that the explanatory variable is a real or finite
dimensional case, model (1.1), where the explanatory variables X are often curves or surfaces, is widely applied in many
fields such as in medicine, economics, environmetrics, chemometrics and others, The reason is that the data we observed
or collected in these fields are exceptionally high-dimensional or even functional. The statistical problems involving the
modelization of functional random variables have received an increasing interest in recent literature, and we can see Ramsay
and Silverman (2005) for parametric models and Ferraty and Vieu (2000) for nonparametric regression model, respectively.
In fact, model (1.1) was first introduced by Ferraty and Vieu (2000). Then, the theory and methods in this research field are
well developed, see, for instance, Ferraty and Vieu (2002, 2003, 2004) and Ferraty et al. (2006), as attested by the monograph
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by Ferraty and Vieu (2006) and the references therein. All the results involved above are in the case that the samples are
observed completely. However, in many practical works such as sampling survey, pharmaceutical tracing test and reliability
test and so on, some pairs of observations may be incomplete, which is often called the case of missing data. Many examples
of missing data and its statistical inferences for regression model can be found in statistical literature when explanatory
variables are of finite dimensionality. For example, we can quote: Cheng (1994), Little and Rubin (2002), Nittner (2003),
Tsiatis (2006), Liang et al. (2007), Efromovich (2011a,b) and references therein for details. When explanatory variables are
in the case of infinite dimensionality or it is of functional nature, only very few literature was reported to investigate the
statistical properties of functional nonparametric regression model for missing data. Recently, Ferraty et al. (2013) first
proposed to estimate the mean of a scalar response based on an i.i.d. functional sample in which explanatory variables
are observed for every subject, while the response variables are missing at random by happenstance for some of them. It
generalized the results in Cheng (1994) to the case where the explanatory variables are of functional nature.

Inspired by all the papers above, our work in this paper aims to contribute to the research on functional nonparametric
regression model (1.1), by studying the estimation of regression operator based on missing data. More precisely, we
construct the estimator of the regression operator of a scalar response and the functional covariate which are assumed
to be sampled from a stationary and ergodic process. Meanwhile, the response variables are MAR but not the covariates
are missing. Then, the asymptotic properties of the estimator are obtained under some mild conditions. Besides the infinite
dimensional character of the data with MAR, we avoid here the widely used strong mixing conditions, which are still to be
verified or even fail to hold for some process induced, see the discussions in Laib and Louani (2010, 2011) for details. As
far as we know, the estimation of the nonparametric regression operator combining missing data and stationary ergodic
processes with functional nature has not been studied in the statistical literature.

The organization of the paper is as follows. In Section 2, we describe some assumptions on the model (1.1) and construct
precisely the estimator of r(.) based on the functional stationary ergodic data with MAR, while in Section 3 we present
the main results of our work. In Section 4, we illustrate our methodology by a simulation study to compare the classical
nonparametric functional model in complete and the model with MAR. Finally, the proofs of the main results are postponed
to Section 5.

2. Model assumptions and estimators

2.1. Functional MAR modeling and estimates

In this section, we focus on estimation of regression operator r(.). Let {(X;, Y;), 1 < i < n} be a sequence of stationary
and ergodic random samples from the model (1.1). Thus, we have that
Yi=rX)+e, (@(=12,...,n), (2.1)

where Eg; = 0and 0 < Var(e;) < oc. Itis clear that in the case of complete data, a well-known N-W kernel-type estimator
of r(x) is given by

> YiKn(d(x. X))

FaX) = S, x €, (2.2)
> Kin(d(x, X))
i=1

where Kj, (1) = K(u/h), K(.) is a real-valued kernel function from [0, co) into [0, 00), h = h, > 0 is a smoothing parameter
satisfying h, — 0asn — oo and d(., .) is a semi-metric on .. However, in missing mechanism with MAR for the response
variable, an available incomplete sample of size n from (X, Y, §) is {(X;, Y;, 8;), 1 < i < n}, where X; is observed completely,
8; = 1ifY;is observed, and §; = 0 otherwise. Meanwhile the Bernoulli random variable § is satisfied with

PG =1lX=x.Y =y) =P =1X = x) =p(x).

where p(x) is a function operator, which is called the conditional probability of the observing response given the predictor
and is often unknown. This mechanism shows that § and Y are conditionally independent given X. Therefore, similar to
Cheng (1994) in finite dimensionality case, we present the estimator of () ), which is given by

n
Z 8YiK (d(xh.,xi)) .
—~ i=1 Tn2(X)
m(x) = n = (2.3)

35K (d(xh,Xi)) TGO’

i=1
where K(.), h = h, and d(., .) are defined as that in (2.2) respectively, and

- 1 o )
Ps0) = D oVITsaG0), J=1,2 (2.4)
i=1

nE(A1(x)) =
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