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a b s t r a c t

In order to construct prediction intervals without the cumbersome – and typically unjus-
tifiable – assumption of Gaussianity, some form of resampling is necessary. The regression
set-uphas beenwell-studied in the literature but time series prediction faces additional dif-
ficulties. The paper at hand focuses on time series that can be modeled as linear, nonlinear
or nonparametric autoregressions, and develops a coherent methodology for the construc-
tion of bootstrap prediction intervals. Forward and backward bootstrapmethods using pre-
dictive and fitted residuals are introduced and compared. We present detailed algorithms
for these different models and show that the bootstrap intervals manage to capture both
sources of variability, namely the innovation error as well as estimation error. In simula-
tions, we compare the prediction intervals associated with different methods in terms of
their achieved coverage level and length of interval.

© 2016 Published by Elsevier B.V.

1. Introduction

Statistical inference is not considered complete if it is not accompanied by ameasure of its inherent accuracy. With point
estimators, the accuracy ismeasured either by a standard error or a confidence interval.With (point) predictors, the accuracy
is measured either by the predictor error variance or by a prediction interval.

In the setting of an i.i.d. (independent and identically distributed) sample, the problem of prediction is not interesting.
However, when the i.i.d. assumption no longer holds, the prediction problem is both important and intriguing; see Geisser
(1993) for an introduction. Typical situations where the i.i.d. assumption breaks down include regression and time series.

The literature on predictive intervals in regression is not large; see e.g. Carroll and Ruppert (1988), Patel (1989), Schmoyer
(1992) and the references therein. Note that to avoid the cumbersome (and typically unjustifiable) assumption of Gaus-
sianity, some form of resampling is necessary. The residual-based bootstrap in regression is able to capture the predictor
variability due to errors in model estimation. Nevertheless, bootstrap prediction intervals in regression are often char-
acterized by finite-sample undercoverage. As a remedy, Stine (1985) suggested resampling the studentized residuals but
this modification does not fully correct the problem; see the discussion in Olive (2007). Politis (2013) recently proposed
the use of predictive (as opposed to fitted) residuals to be used in resampling which greatly alleviates the finite-sample
undercoverage.

Autoregressive (AR) time series models, be it linear, nonlinear, or nonparametric, have a formal resemblance to the
analogous regression models. Indeed, AR models can typically be successfully fitted by the same methods used to estimate
a regression, e.g., ordinary Least Square (LS) regression methods for parametric models, and scatterplot smoothing for

∗ Corresponding author.
E-mail addresses: lipan@ucsd.edu (L. Pan), dpolitis@ucsd.edu (D.N. Politis).

http://dx.doi.org/10.1016/j.jspi.2014.10.003
0378-3758/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.jspi.2014.10.003
http://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2014.10.003&domain=pdf
mailto:lipan@ucsd.edu
mailto:dpolitis@ucsd.edu
http://dx.doi.org/10.1016/j.jspi.2014.10.003


2 L. Pan, D.N. Politis / Journal of Statistical Planning and Inference 177 (2016) 1–27

nonparametric ones. The practitioner has only to be careful regarding the standard errors of the regression estimates but
the model-based, i.e., residual-based, bootstrap should in principle be able to capture those.

Therefore, it is not surprising thatmodel-based resampling for regression can be extended tomodel-based resampling for
auto-regression. Indeed, standard errors and confidence intervals based on resampling the residuals from a fitted AR model
has been one of the first bootstrap approaches for time series; cf. Freedman (1984), Efron and Tibshirani (1986), and Bose
(1988).

However, the situation as regards prediction intervals is not as clear; for example, the conditional nature of the predictive
inference in time series poses a difficulty. There are several papers on prediction intervals for linear AR models but the
literature seems scattered and there are many open questions: (a) how to implement the model-based bootstrap for
prediction, i.e., how to generate bootstrap series; (b) how to construct prediction intervals given the availability of many
bootstrap series already generated; and lastly (c) how to evaluate asymptotic validity of a prediction interval. In addition,
little seems to be known regarding prediction intervals for nonlinear and nonparametric autoregressions.

In the paper at handwe attempt to give answers to the above, and provide a comprehensive approach towards bootstrap
prediction intervals for linear, nonlinear, or nonparametric autoregressions. The models we will consider are of the general
form:

• AR model with homoscedastic errors

Xt = m(Xt−1, . . . , Xt−p)+ ϵt (1.1)

• AR model with heteroscedastic errors

Xt = m(Xt−1, . . . , Xt−p)+ σ(Xt−1, . . . , Xt−p)ϵt . (1.2)

In the above, m(·) and σ(·) are unknown; if they can be are assumed to belong to a finite-dimensional, parametric
family of functions, then the above describe a linear or nonlinear AR model. If m(·) and σ(·) are only assumed to belong
to a smoothness class, then the above models describe a nonparametric autoregression. Regarding the errors, the following
assumption is made:

ϵ1, ϵ2, . . . are i.i.d. (0, σ 2), and such that ϵt is independent from {Xs, s < t} for all t; (1.3)

in conjuction with model (1.2), we must further assume that σ 2
= 1 for identifiability. Note, that under either model (1.1)

or (1.2), the causality assumption (1.3) ensures that E(Xt |{Xs, s < t}) = m(Xt−1, . . . , Xt−p) gives the optimal predictor of Xt
given {Xs, s < t}; here optimality is with respect to Mean Squared Error (MSE) of prediction.

Section 2 describes the foundations of our approach. Pseudo-series can be generated by either a forward or backward
bootstrap, using either fitted or predictive residuals—see Section 2.1 for a discussion. Predictive roots are defined in
Section 2.2 while Sections 2.3 and 2.4 discuss notions of asymptotic validity. Section 3 goes in depth as regards bootstrap
prediction intervals for linear AR models. Section 4 addresses the nonlinear case using two popular nonlinear models as
concrete examples. Finally, Section 5 introduces bootstrap prediction intervals for nonparametric autoregressions. A short
conclusions section recapitulates the main findings making the point that the forward bootstrap with fitted or predictive
residuals serves as the unifying principle across all types of AR models, linear, nonlinear or nonparametric.

2. Bootstrap prediction intervals: laying the foundation

2.1. Forward and backward bootstrap for prediction

As previously mentioned, an autoregression can be formally viewed as regression. However, in prediction with an AR(p)
model, linear or nonlinear, an additional difficulty is that the one-step-ahead prediction is done conditionally on the last p
observed values that are themselves random.

To fix ideas, suppose X1, . . . , Xn are data from the linear AR(1) model: Xt = φ1Xt−1 + ϵt where |φ1| < 1 and the ϵt are
i.i.d. with mean zero. Given the data, the MSE-optimal predictor of Xn+1 given the data is φ1Xn which is approximated in
practice by plugging-in an estimator, say φ̂1, for φ1. Generating bootstrap series X∗

1 , X
∗

2 , . . . from the fitted ARmodel enables
us to capture the variability of φ̂1 when the latter is re-estimated from bootstrap datasets such as X∗

1 , . . . , X
∗
n .

For the application to prediction intervals, note that the bootstrap also allows us to generate X∗

n+1 so that the statistical
accuracy of the predictor φ̂1Xn can be gauged. However, none of these bootstrap series will have their last value X∗

n exactly
equal to the original value Xn as needed for prediction purposes. Herein lies the problem, since the behavior of the predictor
φ̂1Xn needs to be captured conditionally on the original value Xn.

To avoid this difficulty, Thombs and Schucany (1990) proposed to generate the bootstrap data X∗

1 , . . . , X
∗
n going back-

wards from the last value that is fixed at X∗
n = Xn. This is the backward bootstrap method that was revisited by Breidt et al.

(1995) who gave the correct algorithm of finding the backward errors. Note that the generation of X∗

n+1 is still done in a
forward fashion using the fitted AR model conditionally on the value Xn.
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