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a b s t r a c t

Sensitivity analysis aims at highlighting the input variables that have significant impact on
a given model response of interest. By analogy with the total sensitivity index, used to
detect the most influential variables, a screening of interactions can be done efficiently
with the so-called total interaction index (TII), defined as the superset importance of a
pair of variables. Our aim is to investigate the TII, with a focus on statistical inference. At
the theoretical level, we derive its connection to total and closed sensitivity indices. We
present several estimation methods and prove the asymptotical efficiency of the Liu and
Owen estimator. We also address the question of estimating the full set of TIIs, with a
given budget of function evaluations. We observe that with the pick-and-freeze method
the full set of TIIs can be estimated at a linear cost with respect to the problem dimension.
The different estimators are then compared empirically. Finally, an application is given
aiming at discovering a block-additive structure of a function, where no prior knowledge
is available, neither about the interaction structure nor about the blocks.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Global sensitivity analysis has broad applications in screening, interpretation and reliability analysis (Morris et al., 2006;
Saltelli et al., 2000). A well-established method is the estimation of Sobol indices which quantify the influence of variables,
or groups of variables, on the variability of an output. First-order Sobol indices and closed Sobol indices quantify the single
influence of variables and groups of variables, respectively (Sobol, 1993). Homma and Saltelli (1996) introduced the total
sensitivity index which measures the influence of a variable jointly with all its interactions. If the total sensitivity index of a
variable is zero, this variable can be removed because neither the variable nor its interactions — at any order — have an
influence. Thus the total sensitivity index can be used to detect the essential variables, a procedure often called screening
(Saltelli et al., 2006).

By analogy with the total sensitivity index, we consider the so-called total interaction index (TII) that measures the
influence of a pair of variables together with all its interactions. The TII is a particular case of superset importance,
a sensitivity index investigated in Hooker (2004) and Liu and Owen (2006). If the TII of a pair of variable fXi;Xjg is zero, then
there is no interaction term containing simultaneously Xi and Xj, which leads to the elimination of the pair fXi;Xjg from the
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list of possible interactions. By analogy with screening, this can be viewed as interaction screening. More precisely this is
second-order interaction screening, since we consider pairs of variables.

The main benefit of TII is to discover groups of variables that do not interact with each other. To illustrate this, let us
consider a short example. Consider the following function, supposed to be unknown, which we want to analyze based on a
limited number of evaluations:

f ðX1;…;X6Þ ¼ cos ð½1;X1;X5;X3�βÞþ sin ð½1;X4;X2;X6�γÞ
with Xk �i:i:d:U½�1;1�, k¼ 1;…;6, β¼ ½�0:8; �1:1;1:1;1�′ and γ ¼ ½�0:5;0:9;1; �1:1�′, where the prime stands for the
transpose. If we estimate the common first-order and total sensitivity indices (Fig. 1, left), we detect that all variables are
active, on their own as well as by interactions, but not which variables are involved in the interactions and by what amount.
Now we estimate the TII for each combination of two variables. A convenient way to present the TII is by a graph, where the
thickness of the vertex circle represents the first-order index, and the thickness of the edge between two vertices represents
the TII of the two variables. Now the interaction structure, here a partition into two groups, is clearly visible (Fig. 1, right).

This interaction structure corresponds to an additive structure of the analyzed function. This can be advantageously
exploited for metamodelling (see Muehlenstaedt et al., 2012), and for optimization: The 6-dimensional optimization
problem of minimizing f simplifies into two 3-dimensional ones.

The aim of our paper is to investigate the TII, with a focus on statistical inference. Our main result is the asymptotical
efficiency (van der Vaart, 1998) of the estimator proposed by Liu and Owen (2006). The paper is structured as follows.
Section 2 presents theoretical results concerning the TII. Several estimation methods are deduced (Section 3), and
asymptotical properties of the method by Liu and Owen are proved in Section 4. The question of estimating all the TIIs with a
given budget of function evaluations is studied in Section 5. Finally the TII is used to recover the block-additive
decomposition of a 12-dimensional function. Throughout the paper a capital letter like Xi indicates a single random
variable where a lowercase letter like xi indicates a realization of the variable, e.g. a Monte Carlo random sample of the
distribution of Xi. A bold letter like X indicates a vector of variables.

2. Theoretical aspects

2.1. A quick overview of FANOVA decomposition and Sobol indices

Assume a set of independent random variables X ¼ fX1;…;Xdg, and let ν denote the probability measure of
X ¼ ðX1;…;XdÞ. Then for any function f AL2ðνÞ, the functional ANOVA decomposition provides a unique decomposition into
additive terms:

f ðXÞ ¼ μ0þ ∑
d

i ¼ 1
μiðXiÞþ ∑

io j
μi;jðXi;XjÞþ⋯þμ1;…;dðX1;…;XdÞ: ð1Þ

The terms represent first-order effects (μiðXiÞ), second-order interactions (μi;jðXi;XjÞ) and all higher-order combinations of
input variables. Efron and Stein (1981) show that the decomposition is unique if all terms on the right hand side of (1) have
zero mean:

EðμIðX IÞÞ ¼ 0; ID 1;…; d
� Þ; ð2Þ

and the conditional expectations fulfill

Eðμi;i′ðXiXi′Þ∣XiÞ ¼ Eðμi;i′ðXiXi′Þ∣Xi′Þ ¼ Eðμi;i′;i″ðXiXi′Xi″Þ∣XiXi′Þ ¼ Eðμ1;…;nðX1⋯XnÞ∣X1⋯Xn�1Þ ¼⋯¼ 0; ð3Þ
which implies the orthogonality of all terms in (1).

Generally, due to the independence in X in our framework, the conditional expectation of a functional reduces to

EðhðXj;XkÞ∣Xj ¼ xjÞ ¼
Z

hðxj; xkÞdνkðxkÞ:

X1 X2 X3 X4 X5 X6
0.0

0.2

0.4

0.6

0.8

1.0
first−order effect
interactions

1

2

3

4

5

6

Fig. 1. Sensitivity analysis of the example experiment. First-order and total Sobol indices (left), total interaction indices (right).
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