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The standard approach in change-point theory is to base the statistical analysis on a sample
of fixed size. Alternatively, one observes some random phenomenon sequentially and takes
action as soon as one observes some statistically significant deviation from the “normal” be-
haviour. The present paper is a continuation of Gut and Steinebach [2002. Truncated sequential
change-point detection based on renewal counting processes. Scand. J. Statist. 29, 693–719]
the main point being that here we look in more detail into the behaviour of the relevant stop-
ping times, in particular the time it takes from the actual change-point until the change is
detected, more precisely, we prove asymptotics for stopping times under alternatives.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A typical situation in a series of observations is that if everything is in order, then the observations follow some kind of com-
mon pattern, whereas if something goes astray at some time point—known or unknown, then, from there on, the observations
follow a different pattern. A simple and natural example is a possible change in the mean—known or unknown—caused by a fail-
ure in somemechanism in a (manufacturing) process. Oneobviouslywishes to findout as soon as possible if something goeswrong
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in order to take appropriate action, and, at the same time, minimize the probability of taking action if everything is in order.
In this setting one talks about the case with at most one change-point, the so-called AMOC problem, which was introduced by
Page (1954, 1955) in the context of quality control/control charts.

There are two basic approaches to tackle this kind of problems. One is to take a sample of fixed size and perform the analysis.
The other one,which is our approach, is to observe the process sequentially and to take action as soon as one observes a significant
deviation from the normal pattern. Most of the sequential analysis so far is based on (so-called) “open-end” procedures in which
there is no pre-determined endpoint of the observation period. There is less work on truncated (“closed-end”) versions which
are considered here. The latter typically make use of certain extreme value asymptotics to determine their critical values. See,
for example, the sequential testing procedures based on U-statistics or efficient score vectors, respectively, which have been
constructed by Gombay (2000, 2003). For the corresponding background of our approach we refer to our predecessor, Gut and
Steinebach (2002).

The present paper is a continuation of the previous one, the main point being that we look in more detail into the behaviour
of the relevant stopping times, in particular the time it takes from the actual (unknown) change-point until one detects that a
change actually has occurred, in other words, we prove asymptotics for stopping times under alternatives.

To the best of our knowledge, results of this type were initiated by Aue (2004) and Aue and Horváth (2004) who showed
that, in the monitoring of a “change in the mean” model, certain stopping times based on cumulative sums of data (CUSUM's),
which are observed after a training period of size m, have an asymptotically normal limiting distribution (as m → ∞). The latter
investigations have been extended in Aue et al. (2007a) to the monitoring of “early” shifts in the mean, for which extreme value
type test statistics turn out to detect a change faster. Similar results have also been obtained for delay times in the monitoring
of changes in linear regression models (cf., e.g., Kvesic, 2006; Aue et al., 2007b; Hušková et al., 2008). For corresponding results
concerning sequential procedures based on moving sums (MOSUM's) instead of CUSUM's confer also Kühn (2008).

The basic setup is presented in Section 2. An essential technical tool is strong approximation, i.e., the fact that our counting
processes can be appropriately approximated by Wiener processes, the details of which are presented in Section 3. In Section 4
we review some background results under the null hypothesis, taken from Gut and Steinebach (2002), before we take off into
new results, which occupy the remainder of the paper.

2. Setup

Consider a renewal counting process {N(t), t�0} based on an i.i.d. sequence X1,X2, . . . up to (say) time k∗
n, after which it is based

on another i.i.d. sequenceX∗
1,X

∗
2, . . ., independent of the first one, up to timen. Set EX1=� >0, 0 <VarX1=�2 <∞, EX∗

1=�∗=�−� >0,
and 0 <VarX∗

1 = �∗2 <∞. Our aim is to construct an (asymptotic) sequential test, either for the (one-sided) hypotheses

H0 : k∗
n = n vs. H+

1 : 1�k∗
n < n, � >0, (2.1)

or for the (two-sided) hypotheses

H0 : k∗
n = n vs. H1 : 1�k∗

n < n, ��0, (2.2)

based upon observations of the process {N(t), t�0} at the equidistant time points k = 0, 1, . . . ,n, where � thus denotes a possible
change in the mean of the underlying inter-arrival times.

Remark 2.1. A typical situation in which a statistical analysis is based on counting data from a renewal process (instead of the
corresponding inter-arrival times) is given in insurance mathematics. Here, for example, the number of claims are continuously
observed for certain insurance portfolios and decisions (like, e.g., new calculations of premiums) have to be made based on these
numbers.

For our analysis below we set � = 1/� and �2 = �2/�3, and define

Yk = Yk,n = N(k) − N(k − hn) − hn�

�
√
hn

, k = hn, . . . ,n, (2.3)

Zk = Zk,n = N(k) − k�

�
√
k

, k = 1, . . . ,n, (2.4)

where, thus, hn is the window size and the time interval [0,hn] corresponds to the abovementioned training period. Note that
the window size should be chosen with some care. Namely, if it is “too small”, then local randomness might cause false alarms,
whereas a “too large” window size might unnecessarily delay action.
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