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a b s t r a c t

In this paper, we study U-type, column-orthogonal and nearly column-orthogonal designs.
Nearly column-orthogonal designs are very useful in cases where column-orthogonal de-
signs are not known. New designs are obtained which are suitable for screening experi-
ments. In certain cases, the constructed designs are shown to be optimal with respect to
their aliased structure. The aliased structures, of U-type, column-orthogonal and nearly
column-orthogonal designs, are calculated and presented in closed form. This fact makes
the new approach innovating and enables the construction of designs that are different
from the designs constructed in the literature. An extended multiplication theorem and
new infinite families of column-orthogonal designs are presented using periodic Golay
pairs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminary results

Designs for computer experiments have extensively developed in the recent literature: see for example Georgiou and
Efthimiou (2014), Hernandez et al. (2012), Lin et al. (2010, 2009), Sun et al. (2010, 2009), Yang and Liu (2012), Yin and Liu
(2013). A large class of designs for computer experiments includes the well known and commonly used Latin hypercube
designs (LHDs). These designs have n uniformly spaced levels on n runs. Recently, Sun et al. (2011), following Bingham et al.
(2009), relaxed the LHDs’ restriction that the run size equals the number of levels, and introduced an alternative class of
designs, the so-called ‘‘column-orthogonal designs for computer experiments’’. When all levels are equally replicated and
uniformly distributed in each column, the design is called a U-type design. When each column is orthogonal to the mean
effect, the design is called a mean orthogonal design. A design with n runs and m factors having z zeros and q − 1 non-zero
equally replicated distinct levels in each factor is denoted by D(n; z; qm). When z = 0, then the design is a U-type design
and z can be omitted from the notation, i.e. D(n; (q − 1)m). When z = n/q, then the design is a U-type design and z can
be omitted from the notation, i.e. D(n; qm). When z ≠ 0 and z ≠ n/q, then the derived designs are mean orthogonal, but
not of U-type, and such designs will be suitable only for quantitative factors. A design is called a column-orthogonal design,
denoted by COD(n; z; qm), if the inner product of any two columns is zero. A nearly column-orthogonal design is denoted
by NCOD(n; z; qm). Note that a column-orthogonal design COD(n; z; qm) is not always of U-type. A column-orthogonal
design COD(n; z; qm) that is also of U-type, will be denoted as U-type COD(n; z; qm). A column-orthogonal design is called
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ℓ-orthogonal if the sumof the elementwise products of any ℓ columns (whether they are distinct or not) is zero.When ℓ = 3,
then the designs are called 3-orthogonal (see Bingham et al., 2009). The design T is said to be a full fold-over (or fold-over)
of the design D if T =


D

−D


. In Georgiou et al. (2014b), it was shown that any full fold-over design T is 3-orthogonal.

A matrix is said to be circulant if each row vector is rotated one element to the right relative to the preceding row vector.
A circulant matrix A = circ(B) is fully specified by one vector B, which appears as the first row of the matrix. The remain-
ing rows of A are each cyclic permutations of the vector B with an offset equal to the row index. Circulant matrices with
an opposite direction of shift are called back-circulants. If no confusion is caused, the circulant matrix and the correspond-
ing generator row vector will both be abbreviated by the same letter, i.e. A = circ(A). The elements of the information
matrix of a circulant matrix can be calculated using the periodic autocorrelation function of its first row. A set of matricesℓ

j=1{Bj} is said to be disjoint if Bi ∗ Bj = 0 for all i ≠ j, i, j = 1, 2, . . . , ℓ where ∗ denotes the Hadamard product. Let
A = {Aj : Aj = {aj,0, aj,1, . . . , aj,n−1}, j = 1, . . . , ℓ}, be a set of ℓ vectors of length n. These vectors are said to be a set
of disjoint vectors if the set of the corresponding circulant matrices Bj = ∪j{circ(Aj)}, j = 1, . . . , ℓ is disjoint. The periodic
autocorrelation function PA(s) (in abbreviation PAF) and the non-periodic autocorrelation function NA(s) (in abbreviation
NPAF) are defined, reducing i + smodulo n, as

PA(s) =

ℓ
j=1

n−1
i=0

aj,iaj,i+s, and NA(s) =

ℓ
j=1

n−s−1
i=0

aj,iaj,i+s, s = 0, . . . , n − 1

respectively. The set of row vectors A is said to have zero periodic autocorrelation function (zero PAF) if PA(s) = 0 and zero
non-periodic autocorrelation function (zero NPAF) if NA(s) = 0(s = 1, . . . , n − 1). A pair of matrices (A, B) is said to be
amicable (anti-amicable) if ABT

− BAT
= 0(ABT

+ BAT
= 0). Following Kharaghani (2000), a set {B1, B2, . . . , B2n} of real

square matrices is said to be amicable if

n
i=1


B2i−1BT

2i − B2iBT
2i−1


= 0. (1)

Clearly, a set of mutually amicable matrices is amicable but the converse is not generally true. A set of matrices {B1, B2,
. . . , Bn} of orderm satisfies the additive property if

n
i=1

BiBT
i = fIm.

Notation 1. The following notation is also needed.

• {.} is used to denote a set, while [.] is used to denote a multiset (the same element is allowed to exist multiple
times in a multiset). For example, the set A = {a1, a2, a3} is the same as set B = {a1, a1, a2, a2, a2, a3}; both have
the three distinct entries a1, a2, a3. On the other hand, the multiset C = [a1, a2, a3] is not the same as the multi-
set D = [a1, a1, a2, a2, a2, a3] since the first has the three elements a1, a2, a3 while the second has the six elements
a1, a1, a2, a2, a2, a3, even though both have the same three distinct elements a1, a2, a3.

• #(x, S) is used to denote the number of x’s in multiset S. Example: #(a2,D) = 3 and #(a3,D) = 1.
• {S} denotes the set of the distinct elements of multiset S. Example: {C} = {D} = A.
• |x| denotes the absolute value of the element x.

We review some necessary definitions and properties of generalized orthogonal designs. Generalized orthogonal designs
and their properties were introduced in Georgiou et al. (2004).

Definition 1. Let D be an n×mmatrix on the commuting variables x1, . . . , xt where each variable appears in each column
in one of the two forms ±aijxi, for each i = 1, . . . , t , j = 1, . . . , ui, and

t
i=0 ui = n, where u0 is the number of zeros in each

column. Set si =
ui

j=1 a
2
ij. Then D is a generalized orthogonal design (GOD) iff DTD =

t
i=1 six

2
i


Im. Design Dwill be denoted

as D = GOD(n;m;a1,1, . . . , a1,u1;a2,1, . . . , a2,u2; . . . ;at,1, . . . , at,ut ). One alternative notation of a generalized orthogonal
design will be D = GOD(n;m;⟨k1,1, a1,1⟩, . . . , ⟨k1,u1 , a1,u1⟩; . . . ;⟨kt,1, at,1⟩, . . . , ⟨kt,ut , at,ut ⟩) where ki,j denotes how many
times the variable xi has the coefficient ai,j. If ki,j = 1, we usually write (. . . , aij, . . .), otherwise wewrite (. . . , ⟨ki,j, aij⟩, . . .).

Let Ai(i = 1, . . . , 8) be circulant matrices of order n and Rn be the back diagonal identity matrix of order n. The following
structures are known:

C2 =


A1 A2Rn

−A2Rn A1


, C4 =


A1 A2Rn A3Rn A4Rn

−A2Rn A1 AT
4Rn −AT

3Rn

−A3Rn −AT
4Rn A1 AT

2Rn

−A4Rn AT
3Rn −AT

2Rn A1

 ,
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