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a b s t r a c t

We show that smoothing spline, intrinsic autoregression (IAR) and state-space model can
be formulated as partially specified random-effect model with singular precision (SP).
Various fitting methods have been suggested for the aforementioned models and this
paper investigates the relationships among them, once the models have been placed
under a single framework. Some methods have been previously shown to give the best
linear unbiased predictors (BLUPs) under some random-effect models and here we show
that they are in fact uniformly BLUPs (UBLUPs) under a class of models that are generated
by the SP of random effects. We offer some new interpretations of the UBLUPs under
models of SP and define BLUE and BLUP in these partially specified models without having
to specify the covariance. We also show how the full likelihood inferences for random-
effect models can be made for these models, so that the maximum likelihood (ML)
and restricted maximum likelihood (REML) estimators can be used for the smoothing
parameters in splines, etc.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a known ðn�kÞ � n matrix and y an n�1 vector of the observed data. Suppose that we have a statistical model
(or likelihood) available for Ay, but not for y, yet the aim of statistical analysis is to make prediction by . Based only upon the
model of the partial data Ay, can we make a good prediction, for example of the conditional mean of y? If so, in what sense?
In this paper we introduce random-effect models with singular precision (SP) to unify several approaches that have been
developed to tackle this problem in various areas of statistics. They have given different remedies. With new random-effect
models with SP, we study the relationships among them, by offering a common framework under which the previous works
can be placed.

Random-effect models, smoothing splines (Green and Silverman, 1994), intrinsic autoregression (IAR) models (Besag and
Kooperberg, 1995) and state-space models (Harvey, 1989; Durbin and Koopman, 2001), etc., have gained popularity over the
years. Some connections among them have been addressed. For example, smoothing splines can be fitted by random-effect
models (Wahba, 1990; Speed, 1991; Eilers and Marx, 1996; Verbyla et al., 1999; Lee et al., 2006) and by state-space models
(Wecker and Ansley, 1983). Random-effect models, specified by the first-two moments of random effects, are parametric
models that allow full likelihood inferences, while the rest of models, specified by the SP, are partially specified (semi-
parametric) models, without having commonly agreed likelihood inferences yet. In fact, a random-effect model with SP is a
class of models, composed of infinitely many parametric random-effect models. In this paper we study the relationships
between these two types of models and show how to fit partially specified models by using fully parametric models such as
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random-effect models. This means that the likelihood inferences can be made for these partially specified or semi-
parametric models. We study the meaning of the resulting ML and REML estimators.

Consider the curve fitting problem

yi ¼ f ðtiÞ þ ei i¼ 1;…;n

where aot1o⋯otnob and f ð�Þ is a smooth but unknown function to be estimated by minimizing

∑
n

i ¼ 1
ðyi�f ðtiÞÞ2 þ ξ

Z b

a
ðf ″ðuÞÞ2 du: ð1Þ

One of the most popular methods to estimate f ð�Þ involves the use of cubic smoothing splines (Green and Silverman, 1994).
The solution to (1) is unique and can be obtained by the penalized least squares (PLS) of the regression model, as was done
in Green and Silverman (1994)

y¼ v þ e; ð2Þ

where v¼ ðv1;⋯; vnÞT with the ith element vi ¼ vðtiÞ and e¼ ðe1;…; enÞT∼Nð0;ϕInÞ are white noise, 0¼ ð0;…;0ÞT , and In is the
identity matrix of order n. In their approach ŷ ¼ v̂ is estimating f ¼ ðf ðt1Þ;⋯; f ðtnÞÞT ¼ EðyjvÞ. They used the penalty
pðvÞ ¼ vTΓv for some singular matrix Γ (Green and Silverman, 1994, p. 18) where Γ is derived from the second term in (1).
Besag and Kooperberg (1995) called Γ precision. Predictions can be made at different values of ti.

Alternatively, Lee and Nelder (2006) showed that the solution to (1) can also be found by fitting the random-effect model

y¼ X0β0 þ v þ e; ð3Þ

where X0 ¼ ð1; tÞ;1¼ ð1;…;1ÞT , t¼ ðt1;…; tnÞT , and EðvÞ ¼ 0, and CovðvÞ ¼ Γþ, where throughout this paper + denotes the
Moore–Penrose inverse. In their approach ŷ ¼ X0β̂0 þ v̂ is estimating f ¼ ðf ðt1Þ;…; f ðtnÞÞT . In the PLS approach the so-called
smoothing parameter ξ¼ ϕ=λ is not a model parameter, so that it is often estimated by a numerical method such as cross
validation, while in random-effect models it is the ratio of variance components, to be estimated by likelihood methods such
as ML or REML. Speed (1991) pointed out that the generalized maximum likelihood estimator proposed in Wahba (1985) is
identical to REML estimator. Incidentally, Verbyla et al.'s (1999) model can be shown to be identical to Lee and Nelder's
(2006) random-effect model. Thus, it is of interest to investigate the relationships among estimators from these two
apparently different models, namely the PLS of (2) and the random-effect models of Lee and Nelder (2006).

In spatial statistics, the following random-effect model of the general form is often considered:

y¼ Xβ þ v þ e ð4Þ
where β is a p�1 vector of fixed unknown parameters, X is an n� p model matrix and an n�1 vector of random effects v is
multivariate normal with EðvÞ ¼ 0 and nonsingular covariance Σ ¼ CovðvÞ ¼ Γ�1. We have the density function

fdetðΓÞg1=2 expð�vTΓv=2Þ; ð5Þ
which leads to the conditional distribution

vijv�i∼N ∑
j
γijvj; κi

 !
ð6Þ

where v�i ¼ fvj : j≠ig, γii ¼ 0, γij ¼�Γij=Γiiði≠jÞ, and κi ¼ 1=Γii. In spatial statistics, this model is referred to as the conditional
autoregressive model (Besag, 1974). Besag and Kooperberg (1995) proposed IAR models with the constraint Γ1¼ 0, leading
to a SP Γ of v. For the IAR models, Besag and Kooperberg (1995) noted that conditional distribution (6) remains valid and
proposed using the posterior mean under the improper prior proportional to

expð�vTΓv=2Þ ¼ exp �∑
io j

Γijðvi�vjÞ2=2
 !

;

This is equivalent to using the penalty pðvÞ ¼ vTΓv. However, expð�vTΓv=2Þ cannot be normalized to be a density function of v.
Let Γ ¼ ATA=λ for some ðn�kÞ � n matrix A with rank n�k. Here, k is the rank deficiency of Γ. Then, random effects v can

be characterized by the state-transition equation

Av¼ u∼Nð0; λIn�kÞ: ð7Þ
Because A does not have a full rank, v cannot be recovered from u and thus the model for (y, v) is not completely specified,
which gives rise to model with the SP Γ of v. For inferences about β, Besag and Kempton (1986) proposed the use of the
random-effect model for the reduced data (RD):

Ay¼ AXβ þ uþ Ae: ð8Þ
Based on a completely specified model of Ay, the likelihood inferences can be made for fixed unknown parameters.
A question is whether using Ay only can give a fully efficient analysis of parameters as obtainable under using the whole
data y. When it comes to prediction, of interest is ŷ rather than Aŷ and we need methods not based on RD, such as Kalman
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