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a b s t r a c t

We address estimation of trend functions and time dependent slope in a partial linear
model when the errors are unknown time-dependent functionals of latent Gaussian pro-
cesses. Asymptotic results are derived under short-memory and long-memory correlations
in the data.
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1. Introduction

Consider the continuous index bivariate process {x(T ), y(T ), T ∈ R+} observed at discrete time points Ti = i ∈

{1, 2, . . . , n}. For notational convenience we write x(Ti) = xi and y(Ti) = yi. Let ti = Ti/n = i/n denote rescaled times.
Consider the equations

yi = g(ti)+ β(ti) · xi + ui (1.1)

xi = h(ti)+ vi (1.2)

where β , g and h are unknown continuous functions on [0, 1], u(Ti) = ui and v(Ti) = vi are error terms having zero means,
ui having finite secondmoments and vi having finite fourth moments, ui and vi being independent. The assumption that the
bivariate stochastic process {x(T ), y(T ), T ∈ R+} is a continuous index bivariate process is further exploited for deriving
asymptotic formulas and their approximations (see Sections 2, 3 and Appendix).

Eqs. (1.1) and (1.2) define a partial linear model; see Rice (1986), Speckman (1988) and Beran and Ghosh (1998)
among others and references therein; also see Engle et al. (1986) and Wahba (1984). Beran and Ghosh (1998) for instance,
investigate this model when the slope parameter is a constant and the errors are stationary long-memory processes. Here,
our goal is as follows:Usingnpairs of observations (xi, yi), i = 1, 2, . . . , n, wewish to estimate the functionβ(t), t ∈ (0, 1).
Estimation follows by noting in particular that x is a sum of a stochastic component and an unknown but smooth function
h. Regression residuals are then used in a follow-up regression model for estimating the slope. This is further explained in
Section 2. In particular, we consider kernel estimation although, the results should generalize appropriately to other curve
estimation methods as well.
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As for distributional assumptions on the error terms, let ui and vi be Gaussian subordinated. Specifically, they are
time-dependent one-dimensional transformations of some latent stationary Gaussian processes. Typically, the type of the
transformation is unknown and may be non-linear. Although the background Gaussian processes are stationary, due to
the transformation the errors may be non-stationary in the sense that their marginal distributions and in particular their
variancesmay changewith time.Moreover, theirmarginal distributionsmay be non-Gaussian, assuming arbitrary shapes as
functions of time.We consider both shortmemory and longmemory correlations in the latent Gaussian processes and derive
asymptotic properties of the nonparametric curve estimates. It should be noted that the results of this paper can also be
generalized to the case when the continuous index bivariate process {(x(T ), y(T )), T ∈ R+} is observed at unevenly spaced
time points. For simplicity of presentation, we let our observations be evenly spaced in time. However, the assumption
that the (x(T ), y(T )) process is continuous indexed, is exploited further in deriving the asymptotic properties of the curve
estimates. See in particular A9, A10 as well as the asymptotic results and their proofs in Section 3 and Appendix.

In previous work, the constant slope case (i.e. β(t) = β) with stationary short-memory errors is considered in Speckman
(1988), whereas the long-memory case is considered among others in Beran and Ghosh (1998) and Aneiros-Pérez et al.
(2004); also see Robinson (1988) and González-Manteiga and Aneiros-Pérez (2003) and references therein for further
background information. To estimate the constant slope parameter, a ‘regression through zero’ model is fitted to the
regression residuals. In the present context, to estimate the time-dependent slope β(t), we use a kernel smoothed version of
Speckman (1988). Background information on nonparametric curve estimates under long-memory and related references
are in Beran and Feng (2002), Csörgő and Mielniczuk (1995), Ghosh (2001), Giraitis and Koul (1997), Giraitis et al. (2012,
chapter 12), Guo and Koul (2007), Hall and Hart (1990), Menéndez et al. (2010, 2013), Robinson (1997) and Robinson and
Hidalgo (1997). In case of long-memory in the regression errors, bandwidth selection for estimating a nonparametric trend
function from unevenly spaced time series observations that are Gaussian subordinated via a monotone transformation is
considered in Menéndez et al. (2013). These authors consider only the case of long-range dependence and moreover they
do not address uniform convergence of the trend estimate. Under monotonicity, the Hermite rank is unity and the function
is invertible. This fact is used by Menéndez et al. (2013) for estimating the latent Gaussian process via estimation of the
underlying marginal distribution function of the errors. For discrete time processes and with evenly spaced time series
observations, Ghosh and Draghicescu (2002a) consider direct estimation of the variance of the Priestley–Chao estimator.
Also for this case, however when the marginal distributions are stationary, Ray and Tsay (1997) and Beran and Feng (2002)
propose bandwidth selection methods; also see references therein. For further information on bandwidth selection see
Herrmann et al. (1992). As for consistency of the trend estimates, we adopt a simple proof of weak uniform consistency
involving the characteristic function of the kernel (Parzen, 1962; Bierens, 1983). The required condition is that the kernel has
an absolutely integrable characteristic function. Among other important work on this topic, we draw attention in particular
to Hall and Hart (1990), Mack and Silverman (1982), Nadaraya (1965), Schuster (1969) and Silverman (1978); also see
references therein. Our partial linearmodel is in fact a special case of a random design regressionmodel. For relatedwork on
this under long-range dependence see among others, Csörgő and Mielniczuk (1999). For background on kernel smoothing
see Silverman (1986) and Wand and Jones (1995). Reviews of long-memory processes and their applications in statistics as
well as probabilistic backgrounds can be found in Beran (1994), Beran et al. (2013), Giraitis et al. (2012), Leonenko (1999)
and Embrechts and Maejima (2002). Our models for the errors is a slight generalization of Taqqu (1975) where however
stationarity of the latent Gaussian process is inherited by the subordinated process. Here we let this transformation be
time dependent, so as to have the flexibility that the marginal distribution function may change over time. A statistical
problem is then the nonparametric prediction of themarginal function at a future time point. This is addressed in Ghosh and
Draghicescu (2002b); also see Beran and Ocker (1999). For relevant background information on empirical processes arising
from non-linear functionals of Gaussian processes see Breuer and Major (1983), Csörgő and Mielniczuk (1996), Dehling and
Taqqu (1989), Dobrushin and Major (1979), Giraitis and Surgailis (1985), Major (1981) and Taqqu (1975, 1979).

The work in this paper is different from the literature in several ways. First of all, the slope parameter is time dependent,
so that its local estimation is of interest. Secondly, the errors are assumed to be time dependent non-linear functionals of
Gaussian processes, so that their distributions may change over time assuming arbitrary shapes, thus digressing from the
often used assumptions of stationarity and Gaussianity. We also address both short-memory and long-memory correlations
in the data. A simple proof of uniform consistency of the trend estimates is given extending the line of argument in Parzen
(1962) and Bierens (1983).

The paper is organized as follows. Section 2 discusses preliminaries, including technical assumptions (numbered A1
through A12) and terminologies. Slope estimation and related asymptotic results are given in Section 3. Appendix includes
the proofs.

2. Preliminaries

Let an and bn be two sequences of real numbers. In what follows, an ∼ bn will imply that an/bn converges to a constant
as n → ∞. Below, we recollect the model assumptions for (1.1) and (1.2) mentioned above, introduce new notations,
terminologies and further assumptions. Thus, for the partial linear model defined in (1.1) and (1.2) we assume that,

• A1. Trend and slope. The trend functions g(t) and h(t) as well as the slope function β(t)where t ∈ [0, 1] are in C2
[0, 1].
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