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a b s t r a c t

We take the perspective of a researcher planning a randomized trial of a new treatment,
where it is suspected that certain subpopulations may benefit more than others. These
subpopulations could be defined by a risk factor or biomarker measured at baseline.
We focus on situations where the overall population is partitioned into two, predefined
subpopulations. When the true average treatment effect for the overall population is
positive, it logically follows that it must be positive for at least one subpopulation. Our
goal is to construct multiple testing procedures that maximize power for simultaneously
rejecting the overall population null hypothesis and at least one subpopulation null
hypothesis. We show that uniformlymost powerful tests exist for this problem, in the case
where outcomes are normally distributed. We construct new multiple testing procedures
that, to the best of our knowledge, are the first to have this property. These procedures have
the advantage of not requiring any sacrifice for detecting a treatment effect in the overall
population, compared to the uniformly most powerful test of the overall population null
hypothesis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Planning a randomized trial of an experimental treatment can be challenging when it is suspected that certain popula-
tions may benefit more than others. For example, a metastudy by Kirsch et al. (2008) of certain antidepressants suggests
that there may be a clinically meaningful benefit only for those with severe depression at baseline.

We focus on the case of twopredefined subpopulations that partition the overall study population. For a given population,
the mean treatment effect is defined as the difference between themean outcomewere everyone assigned to the treatment
and the mean outcome were everyone assigned to the control. We develop procedures to simultaneously test the null
hypotheses of no positivemean treatment effect for subpopulation one (H01), for subpopulation two (H02), and for the overall
study population (H0∗). These hypotheses are defined formally in Section 3.3 below. For each of these null hypotheses, the
alternative hypothesis is that there is a positive mean treatment effect for the corresponding population.

In some cases, there is a subpopulation for which a larger treatment benefit is conjectured. We call this the favored
subpopulation, and refer to the other as the complementary subpopulation. Since it is usually not known with certainty
before the trial that the treatmentwill benefit the favored subpopulation, planning a hypothesis test for it is important. Also,
in trials where the overall population null hypothesis is rejected, it is of clinical importance to determine if the treatment
benefits the complementary subpopulation, since there was more a priori uncertainty about the treatment effect for this
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Table 1
Percent surviving 30 months, for the overall population and each subpopulation, by study arm. In each cell,
the corresponding number of participants surviving 30 months divided by the number enrolled is given in
parentheses.

Overall population Subpopulation one Subpopulation two

Treatment arm 41% (96/235) 43% (62/143) 37% (34/92)
Control arm 32% (76/234) 35% (48/138) 29% (28/96)

group. Therefore, planning a hypothesis test for this subpopulation is also valuable. This motivates our interest in testing
both subpopulation null hypotheses.

Our goal is to maximize power for simultaneously rejecting the overall population null hypothesis and at least one
subpopulation null hypothesis. We give new multiple testing procedures that maximize this power, uniformly over all
possible alternatives as defined in Section 3.6, for the case where outcomes are normally distributed. This optimality result
may be of interest, since according to Romano et al. (2011), ‘‘there are very few results on optimality in the multiple
testing literature’’. Our procedures require no sacrifice in detecting treatment effects for the overall population; that is,
their probability of rejectingH0∗ equals that of the uniformlymost powerful test ofH0∗, for any data generating distribution.

Our newprocedures have a property called consonance. According to Bittman et al. (2009) ‘‘A testingmethod is consonant
when the rejection of an intersection hypothesis implies the rejection of at least one of its component hypotheses’’.
Consonance was introduced by Gabriel (1969), and subsequent work on consonant procedures includes that of (Hommel,
1986; Romano andWolf, 2005; Bittman et al., 2009; Brannath and Bretz, 2010; Romano et al., 2011). Consonance is desirable
sincewhenever an intersection of null hypotheses is false, it follows logically that at least one of the corresponding individual
null hypotheses must be false as well. A non-consonant procedure may reject an intersection of null hypotheses without
rejecting any of the corresponding individual null hypotheses. In our context, a non-consonant procedure would sometimes
make claims that logically imply the treatment is superior to control in at least one of the two subpopulations, without
indicating which one. To the best of our knowledge, our procedures are the first multiple testing procedures for our problem
that are consonant.

Multiple testing procedures for the family of null hypotheses H0∗,H01,H02 can be constructed using the methods of,
e.g., Holm (1979), Bergmann and Hommel (1988), Maurer et al. (1995), Song and Chi (2007), Rosenbaum (2008), and Alosh
and Huque (2009). However, none of these procedures is uniformly most powerful for simultaneously rejecting the overall
population null hypothesis and at least one subpopulation null hypothesis, as defined in Section 3.6. We compare the power
of our uniformly most powerful procedures to this prior work, in a simulation study in Section 6.

2. Example: randomized trial of treatment for metastatic breast cancer

Before giving formal details, we illustrate our hypothesis testing problem in the context of a randomized trial of
trastuzumab for treating women with metastasized breast cancer (Slamon et al., 2001). As described in the abstract of
Slamon et al. (2001), two types of patients were enrolled in the trial: those who had previously received an anthracycline
as adjuvant therapy and those who had not. We call these types of patients subpopulation one and subpopulation two,
respectively. This distinction between subpopulations is important since the concomitant treatments received by each
during the trial were different. All subjects were randomly assigned to trastuzumab or placebo.

The results of Slamon et al. (2001) are based on survival data obtained 31 months after the last participant was enrolled;
the range of follow-up was 30–51 months. We consider the outcome of survival at 30 months, and test the null hypotheses
H0∗,H01,H02, that survival probability at 30 months is no greater under assignment to trastuzumab than under placebo, for
the overall population, for subpopulation one, and for subpopulation two, respectively.

In Table 1, we give the percent surviving 30months, for the overall population and for each subpopulation, by study arm,
based on data in Fig. 2 of Slamon et al. (2001). The values of the z-statistics for the overall population, subpopulation one, and
subpopulation two, are Z∗ = 1.89, Z1 = 1.48, and Z2 = 1.14, respectively (rounded to two decimal places). The estimated
correlation between Z∗ and Z1 is ρ1 = 0.79, and the estimated correlation between Z∗ and Z2 is ρ2 = 0.62. Formulas for
these z-statistics and correlations are given in Section 3.5; in the above calculations, we substituted sample variances into
these formulas.

We next introduce and demonstrate our new testing procedure. Let MUMP denote the following multiple testing
procedure for {H01,H02,H0∗}:

Define S to be subpopulation 1 if Z1 − (3/4)ρ1 ≥ Z2 − (3/4)ρ2, and subpopulation 2 otherwise. If Z∗ > Φ−1(0.95),
reject H0∗ and H0S .

The procedure MUMP strongly controls the familywise Type I error rate (defined in Section 3.4) at level 0.05. It is uniformly
most powerful for simultaneously rejecting H0∗ and at least one subpopulation null hypothesis, as defined in Section 3.6.

We apply MUMP to the above data example. Since Z1 − (3/4)ρ1 = 0.89 and Z2 − (3/4)ρ2 = 0.67, the subpopulation
S in MUMP equals 1. Since Z∗ = 1.89, which exceeds Φ−1(0.95), our method MUMP rejects H0∗ and H01. Existing multiple
testing procedures based on the related work in the last paragraph of Section 1 (and which are defined in Section 6.1) either
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