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Abstract

The paper consists of three parts. The first part is dedicated to a Markov monotonous random search on a general optimization
space. Under certain restrictions, an upper bound for the complexity of search is presented in an integral form, suitable for further
analysis. This estimate is applied to the case of a torus, where several specific results on the rate of convergence are obtained with
the help of a supplementary optimization problem, discussed in Appendix.
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1. Introduction

Consider a metric space (X, �) and suppose that f is a certain objective function defined on X. Let f have a unique
minimizer x0 = argminx∈X f (x) and assume that our aim is to find x0 with accuracy ε > 0. To estimate x0, we use
random search sequences of a special kind.

Set Bx = {y ∈ X, such that f (y)�f (x)} and consider a Markov chain {�i , i�0} with transition probabilities

R�(x, ·) = �x(·)P�(x, X\Bx) + P�(x, · ∩ Bx), � > 0, (1)

where �x stands for the distribution concentrated at the point x. As usual, P�(x, ·) is a probability measure for any
x ∈ X while P�(·, A) is a measurable function for any Borel set A ⊂ X. Obviously, R�(x, Bx) = 1; this implies that
f (�i )�f (�i−1) with probability 1 for all i > 0. Therefore, the sequence {�i , i�0} is called monotonous.

It is useful to present a general algorithmic scheme for the simulation of the random sequence {�i , i�0} with
�0 = x ∈ X.
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Algorithm 1. 1. Set �0 = x and the iteration number � = 1.
2. Obtain a point � by sampling from the distribution P�(��−1, ·).
3. If f (�)�f (��−1) then set �� = �. Alternatively, set �� = ��−1.
4. Set � = � + 1 and go to Step 2.

In view of the structure of Algorithm 1, the distributions P�(x, ·) can be called trial transition functions.
Since we are required to estimate x0 with accuracy ε, we are interested in the distribution of a random variable

�ε = min{i�0, such that �i ∈ Sε}, where Sr stands for the closed ball of radius r with center x0. Yet it may happen
that �j ∈ Sε and �j+1 /∈ Sε for some j. To avoid such inconvenience, we introduce a family of sets

Mr = {x ∈ Sr, such that f (x) < f (y) for any y /∈ Sr} (2)

and use Mr instead of Sr . Since the Markov chain under consideration is monotonous, it remains in Mr once it has hit
it. Thus we introduce a random variable �ε = min{i�0, such that �i ∈ Mε}��ε. If we know the distribution of �ε,
then we obtain a stopping rule for the random sequence {�i , i�0}. The function Ex�ε can be used as a characteristic
of the complexity of the random search.

Note that the Markov random sequences of Algorithm 1 have a rather simple structure. (It can be considered as
too simple for practical needs.) However, it turns out that under certain assumptions on (X, �) and very mild restric-
tions on f, the global random search method under consideration can be reasonably fast, at least in some asymptotical
sense.

More precisely, as it is proved in Nekrutkin and Tikhomirov (1993) (see also Nekrutkin and Tikhomirov (1989)
for the particular case of a torus), there exist trial transition functions P�(x, ·) such that Ex�ε �C(X, f, �, x) ln2 ε

for any ‘nondegenerate’ function f. Moreover, these trial distributions do not depend on � and are presented
explicitly.

This result seems promising. Indeed, many methods of local optimization need O(| ln ε|) steps to attain the ε-
neighborhood of x0 but require much stronger restrictions concerning the objective function.

If X ⊂ Rd , then (see, e.g., Zhigljavsky, 1991) the so-called pure random search methods need on average O(ε−d)

calculations of the objective function to hit Sε for any reasonable � and any f. Note that these methods formally
correspond to Algorithm 1 under the supposition that the trial distributions P�(x, ·) do not depend on �, x, and ε. On the
other hand, as proved in Nekrutkin and Tikhomirov (1993) (see also Tikhomirov and Nekrutkin, 2004 for a review of
the whole area), the order of growth of Ex�ε typically cannot be smaller than | ln ε| for any choice of trial distributions
P�(x, ·). Therefore, the choice of trial distributions in Algorithm 1 is really important.

In this paper we investigate the Markov monotonous random search sequences of Algorithm 1 in a wider context.
Section 2 is devoted to random search methods with a fixed initial point in a general optimization space (X, �). All
definitions, conditions, and restrictions are collected in Section 2.1. The complexity of a symmetrical random search
is investigated in Sections 2.2 and 2.3. The main result (see Theorem 2.1 and Remark 2.3) gives a general and useful
upper bound for the complexity.

This estimate is used in Section 3 to analyze Markov monotonous random search on a multi-dimensional torus. The
choice of a torus as an example of an optimization space (X, �) needs explanation.

The ‘technical’ explanation is very simple. In view of the discussion of Section 2.1, any optimization space under
consideration must satisfy several conditions, and the main condition CX1 requires that the volume of a ball of any
fixed radius does not depend on the center of this ball. Of course, any bounded subset X of Rd equipped with the
Euclidean (or any other ‘usual’) metric does not satisfy this condition. On the contrary, there is no problem with the
condition CX1 for a torus.

On the other hand, the feasible region X = [0, 1]d is standard for testing optimization methods for different classes
of objective functions. Suppose that a unique minimizer x0 of an objective function f belongs to (0, 1)d . Then we can
reduce X to Id = (0, 1]d and the difference between the Euclidean case and the case of the torus will only be in the
choice of the metric �. If we equip Id with the Euclidean metric, we obtain the standard situation; the choice of the
metric (16) (or of any other equivalent metric) leads to the torus.

Still there are a lot of metrics that turn the set Id into the d-dimensional torus. The ‘uniform’ metric (16) is the most
convenient in view of the simple structure of a ball in this metric.

Returning to results of this paper, we solve three problems related to the d-dimensional torus. Firstly, in Section 3.1
we consider a homogeneous symmetrical Markov random search with a random initial point and get the upper bound
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