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Abstract

Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe
biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a
numerical integration method.Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter
estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a
Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions
using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to
solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all
these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and
the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated
pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to
provide accurate estimates.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

When a biological or physiological process is measured, the regression function of the statistical model corresponding
to the observed data is often derived from a differential equation describing the underlying dynamic process. Difficulties
arise when the differential equation has no analytical solution and/or when the parameters of the regression function
are random and non-observed. Such example can be found in pharmacokinetics, which aims to study drug evolutions
in human organism, this evolution being described by differential systems of compartment interactions. Mixed models,
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for which regression parameters are considered as random variable and non-observed data, are widely used for the
analysis of pharmacokinetic data sets, which have classically repeated measurements in several patients.

This paper aims at providing a general answer to the estimation problem in such statistical incomplete data
models.

Let y be the noised observations of a biological process measured at instants (t1, . . . , tJ ). The biological process
is described by the solution g of an ordinary differential equation (ODE), depending on a stochastic non-observed
parameter �:

yj = g(tj , �) + �j for j = 1 . . . J .

We consider that the observable vector Y is part of a so-called complete vector (Y, �). We assume that both Y and (Y, �)

have density functions, pY (y; �) and pY,�(y, �; �), respectively, depending on a parameter � belonging to some subset
� of the Euclidean space Rq . The estimation of the parameter � has been widely studied when the regression function
g has an explicit form. Two approaches can be followed to tackle this challenge, respectively, the maximum likelihood
and the Bayesian estimations.

Generally, the maximization of the likelihood of the observations cannot be done in a closed form. Dempster et al.
(1977) propose the iterative expectation-maximization (EM) algorithm for incomplete data problems. At the kth it-
eration, the E-step of EM algorithm computes Q(�|�k) = E(log pY (y; �)|y; �k) while the M-step determines �k+1
maximizing Q(�|�k). For cases where the E-step has no closed form, stochastic versions of EM are introduced. Celeux
and Diebolt (1985) introduce the stochastic EM algorithm (SEM). Wei and Tanner (1990) suggest the Monte-Carlo
EM (MCEM) estimating Q(�|�k) by the averaging of m Monte-Carlo replications. Recently, Wu (2004) emphasizes
that MCEM is computationally intensive. As an alternative, Delyon et al. (1999) propose the stochastic approximation
EM algorithm (SAEM) replacing the E-step by a stochastic approximation of Q(�|�k). These methods require the
simulation of the non-observed data �. For cases where this simulation cannot be performed in a closed form, Kuhn
and Lavielle (2004) suggest to resort to iterative methods such as Monte-Carlo Markov chain algorithms
(MCMC).

The Bayesian approach estimates the posterior distribution p�|Y (·|y) of �, a prior p�(·) being given. Because of
the conditional independence structure of p�|Y = ∫

p�|Y,�p�|Y d� and p�|Y = ∫
p�|Y,� p�|Y d�, Gelfand and Smith

(1990) propose a Gibbs sampling to evaluate these two integrals simultaneously. At iteration k, �k , a realization of
�, is simulated with p�|Y (·, �k−1) followed by �k , a realization of � with p�|Y,�(·, �k). Consequently, as in max-
imum likelihood estimation, difficulties arise when the simulation of the conditional distribution cannot be per-
formed in a closed form. For these cases, a Hastings–Metropolis (H–M) algorithm can be included in the Gibbs
sampler.

The use of the H–M algorithm in estimation algorithms requires the evaluation of the regression function g
at each iteration. When g is a non-analytical solution of a dynamical system, it is evaluated using a numerical
integration method. Thus a trade-off between accuracy, stability, and computational cost is required. In this pa-
per, we detail the local linearization (LL) scheme (see e.g. Biscay et al., 1996; Ramos and García-López, 1997;
Jimenez, 2002) not only because of its stability performances but also because this scheme can be extended to a
so-called modified local linearization scheme, adapted to its inclusion in the H–M algorithm. The estimation al-
gorithms are then applied to an approximate model whose regression function is an approximate solution of the
ODE.

The objective of this research is to quantify the error induced by the numerical approximation of the regression
function g. The paper is organized as follows. Section 2 defines the original statistical model; the LL scheme and its
modified version are detailed; the approximate statistical model resulting from the numerical approximation is intro-
duced. Section 3 focuses on the H–M algorithm to simulate the non-observed data � with the conditional distribution.
The error induced by the numerical approximation of g on the conditional distribution is quantified. Section 4 is dedi-
cated to the parameter estimation algorithms. Concerning maximum likelihood and Bayesian estimations, the standard
algorithms are adapted to make inference on the approximate model. The error induced by the use of the numerical
solving method is bounded, respectively, on the likelihood and the posterior distribution. This error is distinct from
the error on the estimates induced by the estimation algorithm which is evaluated by their standard errors. Finally,
the SAEM algorithm and the Bayesian Gibbs sampler are applied on a nonlinear mixed-effects model deriving from
pharmacokinetics in Section 5.
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