

Available online at www.sciencedirect.com

journal of statistical planning and inference

Journal of Statistical Planning and Inference 137 (2007) 3007-3023

www.elsevier.com/locate/jspi

On parameter estimation of stochastic delay differential equations with guaranteed accuracy by noisy observations $\stackrel{\text{transform}}{\Rightarrow}$

Uwe Küchler^{a,*}, Vyacheslav A. Vasil'iev^b

^a Institute of Mathematics, Humboldt University, Berlin, Unter den Linden 6, D-10099 Berlin, Germany ^bDepartment of Applied Mathematics and Cybernetics, Tomsk State University, Lenina 36, 634050 Tomsk, Russia

Received 28 April 2004; received in revised form 22 September 2005; accepted 19 December 2006 Available online 30 January 2007

Abstract

Let $(X(t), t \ge -1)$ and $(Y(t), t \ge 0)$ be stochastic processes satisfying

dX(t) = aX(t) dt + bX(t-1) dt + dW(t)

and

 $\mathrm{d}Y(t) = X(t)\,\mathrm{d}t + \mathrm{d}V(t),$

respectively. Here $(W(t), t \ge 0)$ and $(V(t), t \ge 0)$ are independent standard Wiener processes and $\vartheta = (a, b)'$ is assumed to be an unknown parameter from some subset Θ of \mathscr{R}^2 .

The aim here is to estimate the parameter ϑ based on continuous observation of $(Y(t), t \ge 0)$.

Sequential estimation plans for ϑ with preassigned mean square accuracy ε are constructed using the so-called correlation method. The limit behaviour of the duration of the estimation procedure is studied if ε tends to zero.

© 2007 Elsevier B.V. All rights reserved.

MSC: 34K50; 60H10; 62L10; 62L12

Keywords: Stochastic delay differential equations; Sequential analysis; Noisy observations; Mean square accuracy

1. Introduction

Assume $(\Omega, \mathcal{F}, (\mathcal{F}(t), t \ge 0), P)$ is a given filtered probability space and the processes $W = (W(t), t \ge 0)$ and $V = (V(t), t \ge 0)$ are real-valued standard Wiener processes on $(\Omega, \mathcal{F}, (\mathcal{F}(t), t \ge 0), P)$, adapted to $(\mathcal{F}(t))$ and mutually independent. Further assume that $X_0 = (X_0(t), t \in [-1, 0])$ and Y_0 are a real-valued cadlag process and a real-valued random variable, respectively, on $(\Omega, \mathcal{F}, (\mathcal{F}(t), t \ge 0), P)$ with

$$E\int_{-1}^{0}X_0^2(s)\,\mathrm{d}s<\infty\quad\text{and}\quad EY_0^2<\infty.$$

* Corresponding author. Tel.: +49 30 20935811; fax: +49 30 20935848.

^{*} The research on this paper was supported by RFBR - DFG 02-01-04001, 05-01-04004 Grants and RFBR 04-01-00855 Grant.

E-mail address: kuechler@mathematik.hu-berlin.de (U. Küchler).

^{0378-3758/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jspi.2006.12.001

Assume that Y_0 and $X_0(s)$ are \mathcal{F}_0 -measurable for every s from [-1, 0] and that the quantities W, V, X_0 and Y_0 are mutually independent.

Consider a two-dimensional random process (X, Y) = (X(t), Y(t)) described by the system of stochastic differential equations

$$dX(t) = aX(t) dt + bX(t-1) dt + dW(t),$$
(1)

$$dY(t) = X(t) dt + dV(t), \quad t \ge 0$$
⁽²⁾

with the initial conditions $X(t) = X_0(t)$, $t \in [-1, 0]$ and $Y(0) = Y_0$. The process X is supposed to be hidden, i.e., unobservable, and the process Y is observed. Such models are used in applied problems connected with control, filtering and prediction of stochastic processes (see, for example, Arato, 1982; Liptser and Shiryaev, 1977).

The parameter $\vartheta = (a, b)'$ with $a, b \in \mathbb{R}^1$ is assumed to be unknown and shall be estimated by using one continuous observation of Y.

Eqs. (1) and (2) together with the initial values $X_0(\cdot)$ and Y_0 , respectively, have uniquely solutions $X(\cdot)$ and $Y(\cdot)$, for details see Mao (1997). Eq. (1) is a very special case of stochastic differential equations with time delay, see Kolmanovskii and Myshkis (1992), Mohammed (1996) and Küchler and Sørensen (1997) for examples.

To estimate the true parameter ϑ with a preassigned least square accuracy ε we shall construct sequential plans $(T_{\varepsilon}, \vartheta_{\varepsilon}^{\varepsilon})$. Moreover, we will derive asymptotic properties of the duration T_{ε} of these plans for ε tending to zero.

The method used below is to transform Eqs. (1) and (2) to a single equation (see (6)) for the process $(Y(t), t \ge 0)$, which can be treated by modifying a method from Vasiliev and Konev (1987). The construction of $(T_{\varepsilon}, \vartheta_{\varepsilon}^*)$ may depend on the asymptotic behaviour of the correlation function of the solution of (1) and its estimators if the observation time is increasing unboundedly. These asymptotic properties vary if ϑ runs through \mathscr{R}^2 . Our construction does not seem to work for all ϑ in \Re^2 . Therefore we restrict the discussion to two sets Θ_1 and Θ_2 of parameters, for which we are able to derive the desired properties.

The organization of this paper is as follows. In Section 2 we summarize some known properties of Eq. (1) needed in the sequel. The two mentioned cases for Θ , namely Θ_1 and Θ_2 , are presented and Eqs. (1) and (2) are transformed into a new one for the one-dimensional observed process $(Y(t), t \ge 0)$ (see (6)). In Section 3 the two sequential plans are constructed and the assertions are formulated. Section 4 contains the proofs.

2. Preliminaries

First we summarize some known facts about Eq. (1). For details the reader is referred to Gushchin and Küchler (1999). Together with the described initial condition Eq. (1) has a uniquely determined solution X which can be represented as follows for $t \ge 0$:

$$X(t) = x_0(t)X_0(t) + b \int_{-1}^0 x_0(t-s-1)X_0(s) \,\mathrm{d}s + \int_0^t x_0(t-s) \,\mathrm{d}W(s). \tag{3}$$

Here $x_0 = (x_0(t), t \ge -1)$ denotes the so-called fundamental solution of the deterministic equation

$$x_0(t) = 1 + \int_0^t (\vartheta_0 x_0(s) + \vartheta_1 x_0(s-1)) \,\mathrm{d}s, \quad t \ge 0,$$
(4)

corresponding to (1) with $x_0(t) = 0$, $t \in [-1, 0)$, $x_0(0) = 1$.

The solution X has the property $E \int_0^T X^2(s) ds < \infty$ for every T > 0. The limit behaviour of $x_0(t)$ and therefore also of X(t) for t tending to infinity is closely connected with the properties of the set $\Lambda = \{\lambda \in \mathbb{C} | \lambda = a + be^{-\lambda}\}$ (\mathbb{C} denotes the set of complex numbers). The set Λ is countable infinite (if $b \neq 0$), and for every real c the set $\Lambda_c = \Lambda \cap \{\lambda \in \mathbb{C} | \text{Re } \lambda \ge c\}$ is finite. In particular, $v_0 := v_0(\vartheta) = \sup\{\text{Re } \lambda \mid \lambda \in \mathbb{C}\}$ Λ < ∞ , sup{ \emptyset } = $-\infty$. Define $v_1(\vartheta) := \sup\{\operatorname{Re} \lambda | \lambda \in \Lambda, \operatorname{Re} \lambda < v_0(\vartheta)\}$.

The values $v_0(\vartheta)$ and $v_1(\vartheta)$ determine the asymptotic behaviour of $x_0(t)$ as $t \to \infty$. Indeed, it exist a real γ less than v_1 and a polynomial $\Psi_1(\cdot)$ of degree less than or equal to one, being specified in the proof of Theorem 3.1 (Section 4), such that

$$x_0(t) = \frac{1}{v_0 - a + 1} e^{v_0 t} + \Psi_1(t) e^{v_1 t} + o(e^{\gamma t}) \quad \text{as } t \to \infty.$$

Download English Version:

https://daneshyari.com/en/article/1148594

Download Persian Version:

https://daneshyari.com/article/1148594

Daneshyari.com