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a b s t r a c t

We outline the construction of robust, static designs for nonlinear regression models.

The designs are robust in that they afford protection from increases in the mean

squared error resulting from misspecifications of the model fitted by the experimenter.

This robustness is obtained through a combination of minimax and Bayesian proce-

dures. We first maximize (over a neighborhood of the fitted response function) and then

average (with respect to a prior on the parameters) the sum (over the design space) of

the mean squared errors of the predictions. This average maximum loss is then

minimized over the class of designs. Averaging with respect to a prior means that

there is no remaining dependence on unknown parameters, thus allowing for static,

rather than sequential, design construction. The minimization over the class of designs

is carried out by implementing a genetic algorithm. Several examples are discussed.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that an investigator is planning an experimental study, the data from which will be analyzed by nonlinear
regression. Thus, a specific parametric model will be fitted, and from this fit various inferences will be made. The design in
such studies is typically chosen with the intention of minimizing some loss function such as the variance, or mean squared
error, of the parameter estimates or the predicted values. A problem that arises immediately is that, by the nature of
nonlinear models, these common measures depend on the unknown values of the parameters.

One way in which this problem might be handled is by constructing a ‘locally optimal’ design—one that is optimal only
at a particular value h0 of the, often vector-valued, parameter. The designer hopes that the optimality will extend, at least
approximately, to a neighborhood of h0. This parameter might arise from the experimenter’s prior knowledge, or perhaps
as an estimate from an earlier experiment.

A somewhat more robust approach allows for uncertainty about the parameter values, but not the form of the response
function—one first maximizes the chosen loss function (or minimizes an efficiency measure such as the determinant of the
information matrix) over a neighborhood of a local parameter h0 and then optimizes over the class of designs. See King and
Wong (2000), Dette and Biedermann (2003), and Dette and Pepelyshev (2008) for examples of this approach.

With or without robustness considerations, a more practical method – if time allows – is to design sequentially. In this
approach, evidently first proposed by Box and Hunter (1965a,b) parameter estimates are recalculated as the data accrue,
and subsequent design points are computed in such a way as to optimize a performance measure, evaluated at the current
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estimates. Sinha and Wiens (2002) implement a robust variation of this method. They entertain a class of nonlinear models
forming a neighborhood of that which the experimenter will fit, maximize the loss over this neighborhood, and then
sequentially construct minimizing designs. We emphasize the ‘full’ nature of the neighborhoods over which they
maximize – in contrast to the work referred to in the previous paragraph, the entire form of the response, rather than
merely the parameter value, is allowed to vary. See also Sinha and Wiens (2003) for the asymptotic theory of this
approach.

Yet another manner in which one can deal with this problem is through Bayesian optimality. Here the loss function is
averaged, with respect to a ‘prior’ distribution on the parameters; this averaged value is then minimized. See Dette and
Neugebauer (1997) for details. We note that it is not necessary to adopt any particular position on Bayesianism in order to
take this approach; the introduction of a prior can be viewed merely as a convenient manner in which to eliminate the
parameters from the loss function, thus allowing for static, i.e. nonsequential, design construction.

In this article we combine Bayesian optimality with robustness considerations as in Sinha and Wiens (2002), and go on
to exhibit static designs with attractive robustness properties. Thus, in Section 2, we introduce a class of nonlinear models
forming a neighborhood of that which the experimenter intends to fit. For each member of this class the ‘true’ parameter
h0 is defined as that which minimizes an L2-distance between the true regression response E½Y9x� and the fitted response
f ðx9hÞ, as x ranges over a finite ‘design space’ S. The loss is evaluated at h0 and maximized as

dðx9h0Þ ¼
def

E½Y9x��f ðx9h0Þ, ð1Þ

ranges over an L2ðSÞ-neighborhood of 0; the resulting maximum is then averaged with respect to a prior pðh0Þ.
In Section 3 we describe a genetic algorithm used to minimize the average maximized loss. Examples and further

computational issues are presented and discussed in Section 4. Computing code, written in R, to duplicate these examples
is available from us. Derivations are in the Appendix.

The designs constructed here are indexed by a parameter n 2 ½0,1� representing the relative emphasis that the
experimenter places on those errors, in the MSE of the fitted response, which are due to bias versus those due to random
variation. When designing with n¼ 0 the experimenter is implicitly stating that he has complete faith in the fitted model
E½Y9x� ¼ f ðx9h0Þ and that only the parameter h0 is in doubt; the resulting designs are Bayesian optimal in the usual sense. It
will be seen in the examples of Section 4 that as n increases the designs become more diffuse, hence more robust against
errors in the specification of the functional form of the response. As n-1 the interpretation is that the experimenter has no
faith in the accuracy of his specified model and so seeks a uniform exploration of the design space. There is of course a
dependence of the design on the form of the prior, but this appears to be slight in comparison with the dependence on n.

Our designs are by construction ‘exact’, and so there is no difficulty in implementing them. As for their comparative
performance—there is no shortage in the literature of simulation studies comparing robust with nonrobust designs; these
all tend to give the same, unsurprising message which need not be dwelt upon here. The robust designs give more
protection, against model misspecifications, than do the nonrobust designs tailored for efficiency at one particular model,
and the latter tend to be more efficient when the fitted model is indeed exactly correct. See for example the case studies in
Fang and Wiens (2000) and in Li and Wiens (2011).

2. Approximately specified nonlinear models

In this section we describe our scenario for design in an approximately specified nonlinear regression framework. A
‘design’ is a specification ðn1=n, . . . ,nN=nÞ, for integers fnig summing to n. In implementing the design the experimenter
makes ni observations fYijg

ni

j ¼ 1 at ‘location’ xi—a q-dimensional vector of covariates chosen from a design space S ¼ fxig
N
i ¼ 1.

We note that N, while finite, may be arbitrarily large, and that niZ0—there is no requirement that observations be made
at every design point. After sampling, a known – with some reservations – regression response function f ðx9�Þwill be fitted,
viz. Ŷ ðxÞ ¼ f ðx9ĥÞ. The approximate nature of the model – that E½Y9x� � f ðx9h0Þ for some p-dimensional h0 – is characterized
by first defining

h0 ¼ arg min
h

XN

i ¼ 1

ðE½Y9xi��f ðxi9hÞÞ
2: ð2Þ

Then with dðx9h0Þ given by (1) the probability model is

YðxÞ ¼ f ðx9h0Þþdðx9h0Þþe,

with random errors e. We assume independent, homoscedastic errors, with variance s2.
Assume that f ðx9�Þ is differentiable with respect to h, define ZðhÞ to be the N�p matrix with ith row

zT ðxi9hÞ ¼
@f ðxi9hÞ
@h

,

and assume that Zðh0Þ has full column rank. A consequence of (2) is that, if dðhÞ ¼ ðdðx19hÞ, . . . ,dðxN9hÞÞ
T , then

ZT
ðh0Þdðh0Þ ¼ 0p�1: ð3Þ

J.H. Karami, D.P. Wiens / Journal of Statistical Planning and Inference 144 (2014) 55–6256



Download English Version:

https://daneshyari.com/en/article/1148605

Download Persian Version:

https://daneshyari.com/article/1148605

Daneshyari.com

https://daneshyari.com/en/article/1148605
https://daneshyari.com/article/1148605
https://daneshyari.com

