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a b s t r a c t

The construction of optimal experimental designs for regression models requires knowl-

edge of the information matrix of a single observation. The latter can be found if the

elemental information matrix corresponding to the distribution of the response is known.

We present tables of elemental information matrices for distributions that are often used

in statistical work. The tables contain matrices for one- and two-parameter distributions.

Additionally we describe multivariate normal and multinomial cases. The parameters of

response distributions can themselves be parameterized to provide dependence on

explanatory variables, thus leading to regression formulations for wide classes of models.

We present essential results from optimal experimental design and illustrate our approach

with a few examples including bivariate binary responses and gamma regression.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with optimal experimental design for a rather general class of regression models. The observations
need not be normally distributed, but might, for example, follow a beta or binomial distribution, or, indeed, any
distribution for which the Fisher information matrix exists, together with regular maximum-likelihood estimators.
By regression we intend that the parameters of these distributions are themselves functions of further parameters and of
explanatory variables, at least some of which can be chosen and controlled in the experiment. Frequently a link function
will be required, for example in the parameterization of the variance of a normal distribution or the probability in a
Bernoulli model. We introduce the term ‘‘elemental information matrix’’ to emphasize that the information matrix is
associated with a specific distribution in its standard form and is not related to the further parameterization that comes
from the inclusion of explanatory variables.

Our main objective (see Sections 2 and 4) is to provide a collection of elemental information matrices for specific
distributions which are crucial for the solution of optimal design problems. In this way, we bring together results that are
repetitively scattered throughout the statistical literature. These matrices are essential for constructing information
matrices for ‘‘single’’ observations. The latter may in many cases consist of a series of observations on a single subject.
A typical example is when, together with a controlled variable, for example the dose of a drug, the model includes the
times at which this dose is administered. For applications to experimental design we require the possibility of independent
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replications of these series. Combining the concept of a single observation (supported by tables of information matrices)
with a collection of sensitivity functions for various popular optimality criteria (see Section 3), the reader can address
numerous tasks in the optimal design of experiments.

We begin in Section 2 with an introduction to the generalized regression model, continuing in Section 3 with some
basic ideas about optimal experimental design. The core of our paper is Section 4 where we provide tables of elemental
information matrices for one and two parameter univariate distributions. The multivariate normal distribution, including a
parameterized variance, and multinomial distributions receive special attention in Sections 4.2 and 4.3. Examples 1 and 2
in Section 5 include the equivalence theorem for D-optimality for normal observations with a specific parameterized
variance. In particular, Example 3 includes the family of designs for univariate generalized linear models, whereas, in
Example 4 there are two binary responses. Example 5 is gamma regression when both the parameters are functions of
explanatory variables.

2. Generalized regression

2.1. Main model

We assume that the observed response Y is distributed as

Y � pðy9ZÞ, ð1Þ

where Y and y are k-dimensional vectors, with Z of dimension l. The parameters Z depend on controls x 2 X , where X is a
design set (region). Usually X 2 Rs, but in general X could be a compact set of more complicated structure, for instance,
part of a functional space (see Fedorov and Hackl, 1997, Section 5.7). In what follows we assume that X 2 Rs unless
otherwise stated. In the standard setting for regression models, it is assumed that the expected values of responses Y are
parameterized, as in Pázman (1986), Pukelsheim (1993), Fedorov and Hackl (1997) or Atkinson et al. (2007); see Example 1.
The most popular examples are ‘‘normal’’ regression, binary regression and Poisson regression. Actually, all regression
models with responses belonging to a one-parameter family can be treated in a similar way. For multiparameter
distributions, Z is a vector, all components of which may again depend on controls and other unknown parameters. When
the components of Z are of the same type (e.g. expectations in a multivariate normal model) the generalization is
straightforward. However, in the case of other multi-parameter distributions (such as the gamma or Weibull), the forms of
the various dependencies are less obvious.

As far as we know, in the experimental design literature only in the ‘‘normal’’ case have different types of components
of Z been parameterized, namely, the expectation(s) of the response(s) and its variance (variance–covariance matrix); see,
for instance, Atkinson and Cook (1995), Dette and Wong (1999) or Fedorov and Leonov (2004). A rare exception is the beta
regression considered by Wu et al. (2005) where again the mean and variance are separately parameterized.

2.2. Likelihood estimators and Fisher information matrices

Before proceeding with the design problem for generalized regression, we recall a few commonly known facts
and introduce the required notation. Let

Z¼ Zðx,yÞ, ð2Þ

where ZT ðx,yÞ ¼ fZ1ðx,yÞ, . . . ,Zkðx,yÞg are given functions of controls x and unknown regression parameters y. Further, let n

independent observations fYig
n
1 be made at fxig

n
1. Eqs. (1) and (2) constitute a generalized regression model.

The maximum-likelihood estimator (MLE) ŷn of y can be defined as

ŷn ¼ arg max
y2Y

Yn

i ¼ 1

pðyi9Zðxi,yÞÞ

¼ arg max
y2Y

Lðfyig
n
1,fxig

n
1,yÞ, ð3Þ

where Y is compact and the true value yt of y is an internal point of Y. Under rather mild conditions on pðy9ZÞ, Zðx,yÞ and
on the sequence fxig

n
1 (see, for example, Lehmann and Casella, 1998, Chapter 2), the MLE ŷn is strongly consistent and its

normalized asymptotic variance–covariance matrix is

nDðyt ,fxig
n
1Þ ¼M�1

ðyt ,fxig
n
1Þ, ð4Þ

where

Mðy,fxig
n
1Þ ¼

Xn

i ¼ 1

mðxi,yÞ, ð5Þ

and

mðx,yÞ ¼Var
@

@y
ln pfy9Zðx,yÞg

� �
: ð6Þ
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